Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215282
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPujol Vila, Oriol-
dc.contributor.authorÍñiguez Gómez, David-
dc.date.accessioned2024-09-19T09:39:12Z-
dc.date.available2024-09-19T09:39:12Z-
dc.date.issued2024-06-30-
dc.identifier.urihttps://hdl.handle.net/2445/215282-
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Oriol Pujol Vilaca
dc.description.abstract[en] Electricity is one of the main engines of modern societies. The agents that are involved in the electricity system of a country need to have the best forecasts possible of electricity load in order to ensure that it is correctly supplied, and also to define their action strategies in the market. In this thesis we will focus on the electricity load forecasting for the daily market of the so called Mercado Ibérico de Electricidad (MIBEL), where most of the energy available is auctioned. We studied the State-of-the-Art of the electricity demand approaches, specially for short-term predictions, since we are making one day-ahead estimations. We extracted data from open sources that were later used for designing and testing different types of models. Based on the performance of the different approaches, we selected a model that efficiently combines both time series forecasting and machine learning, obtaining a precision close to the one provided by the system operator, Red Eléctrica. Finally, we analyzed the relevance of each of the variables involved by using the Shapley values and regularization techniques.ca
dc.format.extent61 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) David Íñiguez Gómez, 2024-
dc.rightscodi: GPL (c) David Íñiguez Gómez, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades-
dc.subject.classificationDistribució d'energia elèctrica-
dc.subject.classificationDades enllaçades-
dc.subject.classificationAnàlisi de sèries temporals-
dc.subject.classificationTreballs de fi de màster-
dc.subject.classificationAprenentatge automàticca
dc.subject.otherElectric power distribution-
dc.subject.otherLinked data-
dc.subject.otherTime-series analysis-
dc.subject.otherMaster's thesis-
dc.subject.otherMachine learningen
dc.titleOpen data based electricity load forecastingca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Programari - Treballs de l'alumnat
Màster Oficial - Fonaments de la Ciència de Dades

Files in This Item:
File Description SizeFormat 
ThesisRepo_DavidIniguezGomez-main.zipCodi font31.93 MBzipView/Open
tfm_iñiguez_gomez_david.pdfMemòria1.73 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons