Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215282
Title: Open data based electricity load forecasting
Author: Íñiguez Gómez, David
Director/Tutor: Pujol Vila, Oriol
Keywords: Distribució d'energia elèctrica
Dades enllaçades
Anàlisi de sèries temporals
Treballs de fi de màster
Aprenentatge automàtic
Electric power distribution
Linked data
Time-series analysis
Master's thesis
Machine learning
Issue Date: 30-Jun-2024
Abstract: [en] Electricity is one of the main engines of modern societies. The agents that are involved in the electricity system of a country need to have the best forecasts possible of electricity load in order to ensure that it is correctly supplied, and also to define their action strategies in the market. In this thesis we will focus on the electricity load forecasting for the daily market of the so called Mercado Ibérico de Electricidad (MIBEL), where most of the energy available is auctioned. We studied the State-of-the-Art of the electricity demand approaches, specially for short-term predictions, since we are making one day-ahead estimations. We extracted data from open sources that were later used for designing and testing different types of models. Based on the performance of the different approaches, we selected a model that efficiently combines both time series forecasting and machine learning, obtaining a precision close to the one provided by the system operator, Red Eléctrica. Finally, we analyzed the relevance of each of the variables involved by using the Shapley values and regularization techniques.
Note: Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Oriol Pujol Vila
URI: https://hdl.handle.net/2445/215282
Appears in Collections:Programari - Treballs de l'alumnat
Màster Oficial - Fonaments de la Ciència de Dades

Files in This Item:
File Description SizeFormat 
ThesisRepo_DavidIniguezGomez-main.zipCodi font31.93 MBzipView/Open
tfm_iñiguez_gomez_david.pdfMemòria1.73 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons