Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215400
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorOrtiz Martínez, Daniel-
dc.contributor.advisorPuertas i Prats, Eloi-
dc.contributor.authorPol Pujadas, Maria Magdalena-
dc.date.accessioned2024-09-26T10:32:15Z-
dc.date.available2024-09-26T10:32:15Z-
dc.date.issued2024-06-30-
dc.identifier.urihttps://hdl.handle.net/2445/215400-
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Daniel Ortiz Martínez i Eloi Puertas i Pratsca
dc.description.abstract[en] The principal aim of this project is to conduct an analysis of how different Large Language Models (LLMs) operate in diverse context and situations in the field of education. In particular, we aim to assess the suitability of LLMs for specific tasks within the domain of algorithmic subjects within computer science studies. The tasks under analysis are designed to assist both students and teachers. With regard to students, we will assess the capacity of the models to implement a specified code. When it comes to teachers, we will evaluate the models’ abilities to identify the target of the introduced code and potential errors introduced by students in their codes, enabling students to become more self-taught and seek assistance from teachers when necessary. To evaluate these tasks, we have considered eight models. Two closed-source models were evaluated: GPT-3.5 and GPT-4. Five open-source models were also considered: Llama2, Codellama instruct, Llama3, Platypus2, Deepseek Coder and Qwen-1.5.ca
dc.format.extent80 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Maria Magdalena Pol Pujadas, 2024-
dc.rightscodi: GPL (c) Maria Magdalena Pol Pujadas, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades-
dc.subject.classificationTractament del llenguatge natural (Informàtica)-
dc.subject.classificationSistemes informàtics interactius-
dc.subject.classificationProgramació (Ordinadors)-
dc.subject.classificationTreballs de fi de màster-
dc.subject.otherNatural language processing (Computer science)-
dc.subject.otherInteractive computer systems-
dc.subject.otherComputer programming-
dc.subject.otherMaster's thesis-
dc.titleEvaluating Large Language Models as computer programming teaching assistantsca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
Thesis-MSc-FPDS-main.zipCodi font4.59 MBzipView/Open
tfm_pol_pujadas_maria_magdalena.pdfMemòria449.75 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons