Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/215452
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Sumoy Van Dyck, Lauro | - |
dc.contributor.advisor | Igual Muñoz, Laura | - |
dc.contributor.author | Cantón Simó, Sergi | - |
dc.date.accessioned | 2024-09-30T09:03:41Z | - |
dc.date.available | 2024-09-30T09:03:41Z | - |
dc.date.issued | 2024-09-01 | - |
dc.identifier.uri | https://hdl.handle.net/2445/215452 | - |
dc.description | Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Lauro Sumoy Van Dyck i Laura Igual Muñoz | ca |
dc.description.abstract | Automated clinical coding is the computational process of annotating healthcare free-text data by detecting relevant medical concepts and linking them to a structured medical terminology system. One of the most significant of these systems is SNOMED CT, which contains a vast array of specific medical terms, each identified by a unique ID. This work focuses on the automatic clinical coding of medical notes within the SNOMED CT system. The study presents a comprehensive review of state-of-the-art methods in this field, followed by a detailed examination of two specific approaches, each tested and their results discussed. The first method employs a classical dictionary-based approach, while the second utilizes a deep learning BERT-based model. Additionally, the work introduces a novel contribution to one of these methods and demonstrates a practical application where automatic clinical coding facilitates the extraction of specific numerical values from medical discharge summaries. | ca |
dc.format.extent | 46 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc-by-nc-nd (c) Sergi Cantón Simó, 2023 | - |
dc.rights | codi: GPL (c) Sergi Cantón Simó, 2023 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.rights.uri | http://www.gnu.org/licenses/gpl-3.0.ca.html | * |
dc.source | Màster Oficial - Fonaments de la Ciència de Dades | - |
dc.subject.classification | Llenguatge mèdic | - |
dc.subject.classification | Glossaris | - |
dc.subject.classification | Informàtica mèdica | - |
dc.subject.classification | Treballs de fi de màster | - |
dc.subject.classification | Aprenentatge automàtic | ca |
dc.subject.other | Medical language | - |
dc.subject.other | Glossaries | - |
dc.subject.other | Medical informatics | - |
dc.subject.other | Master's thesis | - |
dc.subject.other | Machine learning | en |
dc.title | Automated clinical coding of medical notes into the SNOMED CT Medical terminology structuring system | ca |
dc.type | info:eu-repo/semantics/masterThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Màster Oficial - Fonaments de la Ciència de Dades Programari - Treballs de l'alumnat |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfm_canton_simo_sergi.pdf | Memòria | 897.03 kB | Adobe PDF | View/Open |
SNOMED-CT-AutomatedClinicalCoding-main.zip | Codi font | 999.52 kB | zip | View/Open |
This item is licensed under a
Creative Commons License