Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215452
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSumoy Van Dyck, Lauro-
dc.contributor.advisorIgual Muñoz, Laura-
dc.contributor.authorCantón Simó, Sergi-
dc.date.accessioned2024-09-30T09:03:41Z-
dc.date.available2024-09-30T09:03:41Z-
dc.date.issued2024-09-01-
dc.identifier.urihttps://hdl.handle.net/2445/215452-
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Lauro Sumoy Van Dyck i Laura Igual Muñozca
dc.description.abstractAutomated clinical coding is the computational process of annotating healthcare free-text data by detecting relevant medical concepts and linking them to a structured medical terminology system. One of the most significant of these systems is SNOMED CT, which contains a vast array of specific medical terms, each identified by a unique ID. This work focuses on the automatic clinical coding of medical notes within the SNOMED CT system. The study presents a comprehensive review of state-of-the-art methods in this field, followed by a detailed examination of two specific approaches, each tested and their results discussed. The first method employs a classical dictionary-based approach, while the second utilizes a deep learning BERT-based model. Additionally, the work introduces a novel contribution to one of these methods and demonstrates a practical application where automatic clinical coding facilitates the extraction of specific numerical values from medical discharge summaries.ca
dc.format.extent46 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Sergi Cantón Simó, 2023-
dc.rightscodi: GPL (c) Sergi Cantón Simó, 2023-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades-
dc.subject.classificationLlenguatge mèdic-
dc.subject.classificationGlossaris-
dc.subject.classificationInformàtica mèdica-
dc.subject.classificationTreballs de fi de màster-
dc.subject.classificationAprenentatge automàticca
dc.subject.otherMedical language-
dc.subject.otherGlossaries-
dc.subject.otherMedical informatics-
dc.subject.otherMaster's thesis-
dc.subject.otherMachine learningen
dc.titleAutomated clinical coding of medical notes into the SNOMED CT Medical terminology structuring systemca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
tfm_canton_simo_sergi.pdfMemòria897.03 kBAdobe PDFView/Open
SNOMED-CT-AutomatedClinicalCoding-main.zipCodi font999.52 kBzipView/Open


This item is licensed under a Creative Commons License Creative Commons