Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/215535
Title: | Quantum Reservoir Computing for Hamiltonian Learning in Metal-Insulator Anderson Transitions |
Author: | Cortés Páez, Lucía |
Director/Tutor: | Mujal Torreblanca, Pere Juliá-Díaz, Bruno |
Keywords: | Ordinadors quàntics Aprenentatge automàtic Treballs de fi de grau Quantum computers Machine learning Bachelor's theses |
Issue Date: | Jun-2024 |
Abstract: | This research investigates transport regimes in metal-insulator Anderson transition through Hamiltonian learning. Quantum reservoir computing is employed to estimate the stochasticity parameter in the Hamiltonian of the quasiperiodic kicked rotor, a model that displays Anderson transition in momentum space. The stochasticity parameter is key for classifying phase regimes, i.e., localized/insulator phase, delocalized/metalic phase, and critical phase, as well as qualitatively forecasting trajectory evolution. Thus, supervised machine learning that effectively maps input trajectories to their corresponding stochasticity parameter has been developed, highlighting the efficacy of quantum machine learning in analyzing quantum phenomena |
Note: | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2024, Tutors: Pere Mujal Torreblanca, Bruno Juliá Díaz |
URI: | https://hdl.handle.net/2445/215535 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Física |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
CORTÉS PÁEZ LUCÍA.pdf | 2.46 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License