Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215795
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRios Huguet, Arnau-
dc.contributor.advisorRozalén Sarmiento, Javier-
dc.contributor.authorMartíınez Marimon, Alba-
dc.date.accessioned2024-10-15T15:23:00Z-
dc.date.available2024-10-15T15:23:00Z-
dc.date.issued2024-06-
dc.identifier.urihttps://hdl.handle.net/2445/215795-
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2024, Tutors: Arnau Rios Huguet, Javier Rozalén Sarmientoca
dc.description.abstractIn this paper, machine learning is used to model the imaginary part of the self-energy of a neutron-star binary system, which is approximated as infinite neutron matter. The performance of the model is evaluated by computing physical properties such as the momentum distribution and the total energy. The results obtained with the model show a high degree of accuracy when compared to theoretical valuesca
dc.format.extent5 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Martínez, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física-
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationEstels de neutronscat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherMachine learningeng
dc.subject.otherNeutron starseng
dc.subject.otherBachelor's theseseng
dc.titleMachine Learning for Infinite Neutron Matter at Finite Temperatureseng
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Física

Files in This Item:
File Description SizeFormat 
MARTÍNEZ MARIMON ALBA.pdf519.48 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons