Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216066
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCaredda, Marco-
dc.contributor.authorCiulu, Marco-
dc.contributor.authorTilocca, F.-
dc.contributor.authorLangasco, Ilaria-
dc.contributor.authorNúñez Burcio, Oscar-
dc.contributor.authorSentellas, Sonia-
dc.contributor.authorSaurina, Javier-
dc.contributor.authorPilo, Maria I.-
dc.contributor.authorSpano, Nadia-
dc.contributor.authorSanna, G.-
dc.contributor.authorMara, Alessandro-
dc.date.accessioned2024-10-25T16:57:17Z-
dc.date.available2024-10-25T16:57:17Z-
dc.date.issued2024-09-26-
dc.identifier.issn2304-8158-
dc.identifier.urihttps://hdl.handle.net/2445/216066-
dc.description.abstractFraudulent practices concerning honey are growing fast and involve misrepresentation of origin and adulteration. Simple and feasible methods for honey authentication are needed to ascertain honey compliance and quality. Working on a robust dataset and simultaneously investigating honey traceability and adulterant detection, this study proposed a portable FTNIR fingerprinting approach combined with chemometrics. Multifloral and unifloral honey samples (n = 244) from Spain and Sardinia (Italy) were discriminated by botanical and geographical origin. Qualitative and quantitative methods were developed using linear discriminant analysis (LDA) and partial least squares (PLS) regression to detect adulterated honey with two syrups, consisting of glucose, fructose, and maltose. Botanical and geographical origins were predicted with 90% and 95% accuracy, respectively. LDA models discriminated pure and adulterated honey samples with an accuracy of over 92%, whereas PLS allows for the accurate quantification of over 10% of adulterants in unifloral and 20% in multifloral honey.-
dc.format.extent18 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/https://doi.org/10.3390/foods13193062-
dc.relation.ispartofFoods, 2024, vol. 13, num.19, p. 1-18-
dc.relation.urihttps://doi.org/https://doi.org/10.3390/foods13193062-
dc.rightscc-by (c) Caredda, M. et al., 2024-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Enginyeria Química i Química Analítica)-
dc.subject.classificationEspectroscòpia-
dc.subject.classificationMel d'abelles-
dc.subject.classificationCuina (Xarops)-
dc.subject.otherSpectrum analysis-
dc.subject.otherHoney-
dc.subject.otherCooking (Syrups)-
dc.titlePortable NIR spectroscopy to simultaneously trace honey botanical and geographicl origins and detect syrup adulteration.-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec750499-
dc.date.updated2024-10-25T16:57:17Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Química i Química Analítica)
Articles publicats en revistes (Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB))

Files in This Item:
File Description SizeFormat 
867038.pdf1.87 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons