Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216337
Title: Local connectivity of boundaries of tame Fatou components of meromorphic functions
Author: Barański, Krzysztof
Fagella Rabionet, Núria
Jarque i Ribera, Xavie
Karpińska, Bogusława
Keywords: Sistemes dinàmics complexos
Funcions de variables complexes
Funcions meromorfes
Complex dynamical systems
Functions of complex variables
Meromorphic functions
Issue Date: 17-Aug-2024
Publisher: Springer Verlag
Abstract: We consider holomorphic maps $f: U \rightarrow U$ for a hyperbolic domain $U$ in the complex plane, such that the iterates of $f$ converge to a boundary point $\zeta$ of $U$. By a previous result of the authors, for such maps there exist nice absorbing domains $W \subset U$. In this paper we show that $W$ can be chosen to be simply connected, if $f$ has doubly parabolic type in the sense of the Baker-Pommerenke-Cowen classification of its lift by a universal covering (and $\zeta$ is not an isolated boundary point of $U$). We also provide counterexamples for other types of the map $f$ and give an exact characterization of doubly parabolic type in terms of the dynamical behaviour of $f$.
Note: Reproducció del document publicat a: https://doi.org/10.1007/s00208-024-02957-y
It is part of: Mathematische Annalen, 2024
URI: https://hdl.handle.net/2445/216337
Related resource: https://doi.org/10.1007/s00208-024-02957-y
ISSN: 0025-5831
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
865712.pdf1.97 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons