Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/216337
Title: | Local connectivity of boundaries of tame Fatou components of meromorphic functions |
Author: | Barański, Krzysztof Fagella Rabionet, Núria Jarque i Ribera, Xavie Karpińska, Bogusława |
Keywords: | Sistemes dinàmics complexos Funcions de variables complexes Funcions meromorfes Complex dynamical systems Functions of complex variables Meromorphic functions |
Issue Date: | 17-Aug-2024 |
Publisher: | Springer Verlag |
Abstract: | We consider holomorphic maps $f: U \rightarrow U$ for a hyperbolic domain $U$ in the complex plane, such that the iterates of $f$ converge to a boundary point $\zeta$ of $U$. By a previous result of the authors, for such maps there exist nice absorbing domains $W \subset U$. In this paper we show that $W$ can be chosen to be simply connected, if $f$ has doubly parabolic type in the sense of the Baker-Pommerenke-Cowen classification of its lift by a universal covering (and $\zeta$ is not an isolated boundary point of $U$). We also provide counterexamples for other types of the map $f$ and give an exact characterization of doubly parabolic type in terms of the dynamical behaviour of $f$. |
Note: | Reproducció del document publicat a: https://doi.org/10.1007/s00208-024-02957-y |
It is part of: | Mathematische Annalen, 2024 |
URI: | https://hdl.handle.net/2445/216337 |
Related resource: | https://doi.org/10.1007/s00208-024-02957-y |
ISSN: | 0025-5831 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
865712.pdf | 1.97 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License