Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216550
Title: Iterated logarithm law for anticipating stochastic differential equations
Author: Márquez, David (Márquez Carreras)
Rovira Escofet, Carles
Keywords: Equacions diferencials estocàstiques
Anàlisi estocàstica
Stochastic differential equations
Stochastic analysis
Issue Date: 14-Sep-2007
Publisher: Springer Verlag
Abstract: We prove a functional law of iterated logarithm for the following kind of anticipating stochastic differential equations $$ \xi_t^u=X_0^u+\frac{1}{\sqrt{\log \log u}} \sum_{j=1}^k \int_0^t A_j^u\left(\xi_s^u\right) \circ d W_s^j+\int_0^t A_0^u\left(\xi_s^u\right) d s $$ where $u>e, W=\left\{\left(W_t^1, \ldots, W_t^k\right), 0 \leq t \leq 1\right\}$ is a standard $k$ dimensional Wiener process, $A_0^u, A_1^u, \ldots, A_k^u: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ are functions of class $\mathcal{C}^2$ with bounded partial derivatives up to order $2, X_0^u$ is a random vector not necessarily adapted and the first integral is a generalized Stratonovich integral .
Note: Versió postprint del document publicat a: https://doi.org/10.1007/s10959-007-0114-x
It is part of: Journal of Theoretical Probability, 2007, vol. 21, num.3, p. 650-659
URI: https://hdl.handle.net/2445/216550
Related resource: https://doi.org/10.1007/s10959-007-0114-x
ISSN: 0894-9840
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
112735.pdf137.93 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.