Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/216550
Title: | Iterated logarithm law for anticipating stochastic differential equations |
Author: | Márquez, David (Márquez Carreras) Rovira Escofet, Carles |
Keywords: | Equacions diferencials estocàstiques Anàlisi estocàstica Stochastic differential equations Stochastic analysis |
Issue Date: | 14-Sep-2007 |
Publisher: | Springer Verlag |
Abstract: | We prove a functional law of iterated logarithm for the following kind of anticipating stochastic differential equations $$ \xi_t^u=X_0^u+\frac{1}{\sqrt{\log \log u}} \sum_{j=1}^k \int_0^t A_j^u\left(\xi_s^u\right) \circ d W_s^j+\int_0^t A_0^u\left(\xi_s^u\right) d s $$ where $u>e, W=\left\{\left(W_t^1, \ldots, W_t^k\right), 0 \leq t \leq 1\right\}$ is a standard $k$ dimensional Wiener process, $A_0^u, A_1^u, \ldots, A_k^u: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ are functions of class $\mathcal{C}^2$ with bounded partial derivatives up to order $2, X_0^u$ is a random vector not necessarily adapted and the first integral is a generalized Stratonovich integral . |
Note: | Versió postprint del document publicat a: https://doi.org/10.1007/s10959-007-0114-x |
It is part of: | Journal of Theoretical Probability, 2007, vol. 21, num.3, p. 650-659 |
URI: | https://hdl.handle.net/2445/216550 |
Related resource: | https://doi.org/10.1007/s10959-007-0114-x |
ISSN: | 0894-9840 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
112735.pdf | 137.93 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.