Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216593
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMundet i Riera, Ignasi-
dc.date.accessioned2024-11-19T09:06:25Z-
dc.date.available2024-11-19T09:06:25Z-
dc.date.issued2024-04-19-
dc.identifier.issn1083-4362-
dc.identifier.urihttps://hdl.handle.net/2445/216593-
dc.description.abstractWe define the discrete degree of symmetry disc-sym $(X)$ of a closed $n$-manifold $X$ as the biggest $m \geq 0$ such that $X$ supports an effective action of $(\mathbb{Z} / r)^m$ for arbitrarily big values of $r$. We prove that if $X$ is connected then disc-sym $(X) \leq$ $3 n / 2$. We propose the question of whether for every closed connected $n$-manifold $X$ the inequality disc-sym $(X) \leq n$ holds true, and whether the only closed connected $n$-manifold $X$ for which disc-sym $(X)=n$ is the torus $T^n$. We prove partial results providing evidence for an affirmative answer to this question.-
dc.format.extent38 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Verlag-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/https://doi.org/10.1007/s00031-024-09858-z-
dc.relation.ispartofTransformation Groups, 2024-
dc.relation.urihttps://doi.org/https://doi.org/10.1007/s00031-024-09858-z-
dc.rightscc by (c) Ignasi Mundet i Riera, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationGrups de transformacions-
dc.subject.classificationTopologia-
dc.subject.otherTransformation groups-
dc.subject.otherTopology-
dc.titleDiscrete degree of symmetry of manifolds-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec751893-
dc.date.updated2024-11-19T09:06:25Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870730.pdf823.69 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons