Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/216830
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Radeva, Petia | - |
dc.contributor.advisor | Aghaei, Maya | - |
dc.contributor.author | Ruiz Ávila, María | - |
dc.date.accessioned | 2024-11-29T09:47:33Z | - |
dc.date.available | 2024-11-29T09:47:33Z | - |
dc.date.issued | 2024-06-10 | - |
dc.identifier.uri | https://hdl.handle.net/2445/216830 | - |
dc.description | Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Petia Radeva i Maya Aghaei | ca |
dc.description.abstract | [en] Facial attribute transformation, which involves manipulating specific facial features in images and videos, has become a focal point in computer vision and image processing. This project conducts a comprehensive comparative analysis of cutting-edge methodologies, utilizing diverse models to modify latent imagery representations. We assess various state-of-the-art techniques in facial attribute editing through quantitative, qualitative, and efficiency metrics. Our study demonstrates the superior efficacy of an innovative approach using the Multi-Attribute Latent Transformer Model, which adeptly learns and modifies multiple facial attributes simultaneously. This model not only enhances operational efficiency but also maintains the authenticity and integrity of facial identities. Additionally, we investigate how the correlation of attributes in the training images introduces bias in the results. As part of the project, we have developed a user interface that allows for the visual comparison of four models. This application enables users to observe and compare the distinctions and effectiveness of each model side-by-side. In summary, this research advances the field of facial attribute modification by presenting an in-depth comparative study that highlights the strengths and limitations of leading methodologies in face editing, thereby laying the groundwork for future innovations in refined and scalable facial image transformation. | ca |
dc.format.extent | 96 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | memòria: cc-nc-nd (c) María Ruiz Ávila, 2024 | - |
dc.rights | codi: GPL (c) María Ruiz Ávila, 2024 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | - |
dc.rights.uri | http://www.gnu.org/licenses/gpl-3.0.ca.html | * |
dc.source | Treballs Finals de Grau (TFG) - Enginyeria Informàtica | - |
dc.subject.classification | Aprenentatge automàtic | ca |
dc.subject.classification | Visió per ordinador | ca |
dc.subject.classification | Reconeixement facial (Informàtica) | ca |
dc.subject.classification | Processament digital d'imatges | ca |
dc.subject.classification | Programari | ca |
dc.subject.classification | Treballs de fi de grau | ca |
dc.subject.classification | Xarxes neuronals (Informàtica) | ca |
dc.subject.other | Machine learning | en |
dc.subject.other | Computer vision | en |
dc.subject.other | Human face recognition (Computer science) | en |
dc.subject.other | Digital image processing | en |
dc.subject.other | Computer software | en |
dc.subject.other | Bachelor's theses | en |
dc.subject.other | Neural networks (Computer science) | en |
dc.title | Comparative analysis of state-of-the-art deep-learning based face editing algorithms | ca |
dc.type | info:eu-repo/semantics/bachelorThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Treballs Finals de Grau (TFG) - Enginyeria Informàtica Treballs Finals de Grau (TFG) - Matemàtiques Programari - Treballs de l'alumnat |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_ruiz_avila_maria.pdf | Memòria | 12.82 MB | Adobe PDF | View/Open |
MariaRuizAvila-codi.zip | Codi font | 11.45 MB | zip | View/Open |
This item is licensed under a
Creative Commons License