Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216886
Title: Classifying spaces for equivariant $\mathbb{Z} /(2)$-bundles
Author: Codina Broto, Sergi
Director/Tutor: Pitsch, Wolfgang
Mundet i Riera, Ignasi
Keywords: Topologia algebraica
Espais fibrats (Matemàtica)
Treballs de fi de màster
Algebraic topology
Fiber spaces (Mathematics)
Master's thesis
Issue Date: 28-Jun-2024
Abstract: [en] The aim of this project is to study classifying spaces for $\mathbb{Z} / 2$-equivariant principal $G$-bundles, where $G$ denotes a topological group. In the first chapter, we will study the category of principal $G$-bundles with some important results, including its motivation through the theory of real vector bundles, and the construction of their classifying spaces; reference for this study will be taken from [Die08], [MS74] and [Hus94]. In the second chapter, we introduce the notion of $\Gamma$-equivariant principal $G$ bundles for a topological group $\Gamma$, and follow the work done by Lück and Uribe [LU14] while interested in the specific case $\Gamma=(\mathbb{Z} / 2)$, which allows for simplifications in the proofs of some results which lead to the construction of a model for the classifying space for $\mathbb{Z} / 2$-equivariant principal $G$-bundles, and the subsequent study of the properties of such classifying spaces.
Note: Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Wolfgang Pitsch i Ignasi Mundet i Riera
URI: https://hdl.handle.net/2445/216886
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
tfm_codina_broto_sergi.pdfMemòria545.53 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons