Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216888
Title: Regularity of Lipschitz free boundaries in the alt-Caffarelli problem
Author: Domingo Pasarin, Joan
Director/Tutor: Ros, Xavier
Keywords: Funcions harmòniques
Equacions en derivades parcials
Treballs de fi de màster
Problemes de contorn
Harmonic functions
Partial differential equations
Master's thesis
Boundary value problems
Issue Date: 27-Jun-2024
Abstract: In this work we study the regularity of Lipschitz free boundaries in the Alt-Caffarelli problem. We prove that Lipschitz free boundaries are $C^{1, \alpha}$ by exploiting the rescaling invariance of the problem and the initial Lipschitz regularity of the boundary. Moreover, we also show that $C^{1, \alpha}$ boundaries are smooth, which combined with the previous result implies that Lipschitz free boundaries are smooth.
Note: Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Xavier Ros
URI: https://hdl.handle.net/2445/216888
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
tfm_domingo_pasarin_joan.pdfMemòria664.01 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons