Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216892
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorOrtega Cerdà, Joaquim-
dc.contributor.authorJames Cano, Joaquı́n-
dc.date.accessioned2024-12-03T09:45:03Z-
dc.date.available2024-12-03T09:45:03Z-
dc.date.issued2024-06-27-
dc.identifier.urihttps://hdl.handle.net/2445/216892-
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Joaquim Ortega Cerdàca
dc.description.abstractIn this work we study different problems concerning the characterization of those measurable sets that, among all sets having a prescribed measure, can capture the largest possible energy fraction of an analytic function in both the Euclidean and hyperbolic settings. In other terms, considering as spaces of analytic functions the Fock space $\mathcal{F}^2\left(\mathbb{C}^n\right)$, with $n \geq 1$, and the Bergman space $\mathcal{A}_\alpha^2(\mathbb{D})$, with $\alpha>1$, we show that given some measurable sets $\Omega \subset \mathbb{C}$ and $\Omega^{\prime} \subset \mathbb{D}$, with some fixed measure $c>0$, the concentration quantities and $$ & \max _{F \in \mathcal{F}^2\left(\mathbb{C}^n\right) \backslash\{0\}}\left\{\frac{\int_{\Omega}|F(z)|^2 e^{-\pi|z|^2} d m_{2 n}(z)}{\left.\int_{\mathbb{C}^n}|F(z)|^2 e^{-\pi|z|^2 d m_{2 n}(z)}\right\}}\right. \\ & \max _{f \in \mathcal{A}_\alpha^2(\mathbb{D}) \backslash\{0\}}\left\{\frac{\int_{\Omega^{\prime}}(\alpha-1)|f(z)|^2\left(1-|z|^2\right)^\alpha d m_h(z)}{\int_{\mathbb{D}}(\alpha-1)|f(z)|^2\left(1-|z|^2\right)^\alpha d m_h(z)}\right\} $$ are maximized when considering the sets to be a ball (in each respective geometry) with the same measure $c>0$. Specifically, we give a sharp upper bound for each of the previous problems and characterize not only the subsets but also the functions where the maxima are attained.ca
dc.format.extent50 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc by-nc-nd (c) Joaquı́n James Cano, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada-
dc.subject.classificationAnàlisi matemàticacat
dc.subject.classificationAnàlisi funcionalcat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.classificationFuncions analítiquescat
dc.subject.otherMathematical analysiseng
dc.subject.otherFunctional analysiseng
dc.subject.otherMaster's thesiseng
dc.subject.otherAnalytic functionseng
dc.titleConcentration of analytic functionsca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
tfm_james_cano_joaquin.pdfMemòria695.76 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons