Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/216892
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Ortega Cerdà, Joaquim | - |
dc.contributor.author | James Cano, Joaquı́n | - |
dc.date.accessioned | 2024-12-03T09:45:03Z | - |
dc.date.available | 2024-12-03T09:45:03Z | - |
dc.date.issued | 2024-06-27 | - |
dc.identifier.uri | https://hdl.handle.net/2445/216892 | - |
dc.description | Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Joaquim Ortega Cerdà | ca |
dc.description.abstract | In this work we study different problems concerning the characterization of those measurable sets that, among all sets having a prescribed measure, can capture the largest possible energy fraction of an analytic function in both the Euclidean and hyperbolic settings. In other terms, considering as spaces of analytic functions the Fock space $\mathcal{F}^2\left(\mathbb{C}^n\right)$, with $n \geq 1$, and the Bergman space $\mathcal{A}_\alpha^2(\mathbb{D})$, with $\alpha>1$, we show that given some measurable sets $\Omega \subset \mathbb{C}$ and $\Omega^{\prime} \subset \mathbb{D}$, with some fixed measure $c>0$, the concentration quantities and $$ & \max _{F \in \mathcal{F}^2\left(\mathbb{C}^n\right) \backslash\{0\}}\left\{\frac{\int_{\Omega}|F(z)|^2 e^{-\pi|z|^2} d m_{2 n}(z)}{\left.\int_{\mathbb{C}^n}|F(z)|^2 e^{-\pi|z|^2 d m_{2 n}(z)}\right\}}\right. \\ & \max _{f \in \mathcal{A}_\alpha^2(\mathbb{D}) \backslash\{0\}}\left\{\frac{\int_{\Omega^{\prime}}(\alpha-1)|f(z)|^2\left(1-|z|^2\right)^\alpha d m_h(z)}{\int_{\mathbb{D}}(\alpha-1)|f(z)|^2\left(1-|z|^2\right)^\alpha d m_h(z)}\right\} $$ are maximized when considering the sets to be a ball (in each respective geometry) with the same measure $c>0$. Specifically, we give a sharp upper bound for each of the previous problems and characterize not only the subsets but also the functions where the maxima are attained. | ca |
dc.format.extent | 50 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc by-nc-nd (c) Joaquı́n James Cano, 2024 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Màster Oficial - Matemàtica Avançada | - |
dc.subject.classification | Anàlisi matemàtica | cat |
dc.subject.classification | Anàlisi funcional | cat |
dc.subject.classification | Treballs de fi de màster | cat |
dc.subject.classification | Funcions analítiques | cat |
dc.subject.other | Mathematical analysis | eng |
dc.subject.other | Functional analysis | eng |
dc.subject.other | Master's thesis | eng |
dc.subject.other | Analytic functions | eng |
dc.title | Concentration of analytic functions | ca |
dc.type | info:eu-repo/semantics/masterThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Màster Oficial - Matemàtica Avançada |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfm_james_cano_joaquin.pdf | Memòria | 695.76 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License