Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216960
Title: Introduction to Berkovich spaces
Author: Reig Fité, Oriol
Director/Tutor: Sombra, Martín
Keywords: Anàlisi p-àdica
Espais topològics
Treballs de fi de màster
Espais analítics
p-adic analysis
Topological spaces
Master's thesis
Analytic spaces
Issue Date: 4-Jun-2024
Abstract: In this Master Final Project I have studied Berkovich spaces, which is one of the existing approaches to non-Archimedean geometry, a branch that deals with analytic spaces over non-Archimedean fields. Let us first give some context on $p$-adic geometry and the necessity to develop such a theory of analytic spaces. Any norm gives rise to a metric space by setting the distance between two elements as the norm of their difference. In the case of a metric space induced by a non-Archimedean norm, the topological space is totally disconnected. For this reason, when we try to develop a theory of analytic functions similar that for the complex case (i.e., the Archimedean case), we encounter some notorious problems.
Note: Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Martín Sombra
URI: https://hdl.handle.net/2445/216960
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
tfm_reig_oriol.pdfMemòria664.09 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons