Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/216960
Title: | Introduction to Berkovich spaces |
Author: | Reig Fité, Oriol |
Director/Tutor: | Sombra, Martín |
Keywords: | Anàlisi p-àdica Espais topològics Treballs de fi de màster Espais analítics p-adic analysis Topological spaces Master's thesis Analytic spaces |
Issue Date: | 4-Jun-2024 |
Abstract: | In this Master Final Project I have studied Berkovich spaces, which is one of the existing approaches to non-Archimedean geometry, a branch that deals with analytic spaces over non-Archimedean fields. Let us first give some context on $p$-adic geometry and the necessity to develop such a theory of analytic spaces. Any norm gives rise to a metric space by setting the distance between two elements as the norm of their difference. In the case of a metric space induced by a non-Archimedean norm, the topological space is totally disconnected. For this reason, when we try to develop a theory of analytic functions similar that for the complex case (i.e., the Archimedean case), we encounter some notorious problems. |
Note: | Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Martín Sombra |
URI: | https://hdl.handle.net/2445/216960 |
Appears in Collections: | Màster Oficial - Matemàtica Avançada |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfm_reig_oriol.pdf | Memòria | 664.09 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License