Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216987
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorJarque i Ribera, Xavier-
dc.contributor.authorRosado Rodríguez, David-
dc.date.accessioned2024-12-10T08:42:13Z-
dc.date.available2024-12-10T08:42:13Z-
dc.date.issued2024-06-
dc.identifier.urihttps://hdl.handle.net/2445/216987-
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Xavier Jarque i Riberaca
dc.description.abstractRoot-finding algorithms have historically been employed to solve numerically nonlinear equations of the form $f(x)=0$. Newton's method, one of the most well-known techniques, started being analyzed as a dynamical system in the complex plane during the late 19th century. This thesis explores the dynamics of damped Traub's methods $T_{p, \delta}$ when applied to polynomials. These methods encompass a range from Newton's method $(\delta=0)$ to Traub's method $(\delta=1)$. Our focus lies in investigating various topological properties of the basins of attraction, particularly their simple connectivity and unboundedness, which are crucial in identifying a universal set of initial conditions that ensure convergence to all roots of $p$. While the former topological properties are already proven for Newton's method $(\delta=0)$, they remain open for $\delta \neq 0$. We present results that contribute to addressing this gap, including a proof for cases where $\delta$ is close to 0 and for the polynomial family $p_d(z)=z\left(z^d-1\right)$.ca
dc.format.extent72 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc by-nc-nd (c) David Rosado Rodríguez, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada-
dc.subject.classificationEquacions funcionalscat
dc.subject.classificationFuncions de variables complexescat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.classificationSistemes dinàmics complexoscat
dc.subject.otherFunctional equationseng
dc.subject.otherFunctions of complex variableseng
dc.subject.otherMaster's thesiseng
dc.subject.otherComplex dynamical systemseng
dc.titleOn the basins of attraction of root-finding algorithmsca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
tfm_rosado_rodriguez_david.pdfMemòria5.17 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons