Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217049
Title: Minimal energy on the circle
Author: Arribas Viera, David
Director/Tutor: Marzo Sánchez, Jordi
Keywords: Teoria del potencial (Matemàtica)
Geometria convexa
Treballs de fi de màster
Funcions de variables complexes
Potential theory (Mathematics)
Convex geometry
Master's thesis
Functions of complex variables
Issue Date: 2-Sep-2024
Abstract: We find minimizing configurations for most of the Riesz-$s$ energies on the unit circle $S^{1}$ . We also provide a complete asymptotic expansion of the Riesz-$s$ energy associated to $N$ equally spaced points on the $S^{1}$. Finally, we present Chui's conjecture, prove a partial result and show how it leads to an interesting consequence about function approximation in the Bergman space.
Note: Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Jordi Marzo Sánchez
URI: https://hdl.handle.net/2445/217049
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
tfm_arribas_viera_david.pdfMemòria742.83 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons