Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217049
Title: | Minimal energy on the circle |
Author: | Arribas Viera, David |
Director/Tutor: | Marzo Sánchez, Jordi |
Keywords: | Teoria del potencial (Matemàtica) Geometria convexa Treballs de fi de màster Funcions de variables complexes Potential theory (Mathematics) Convex geometry Master's thesis Functions of complex variables |
Issue Date: | 2-Sep-2024 |
Abstract: | We find minimizing configurations for most of the Riesz-$s$ energies on the unit circle $S^{1}$ . We also provide a complete asymptotic expansion of the Riesz-$s$ energy associated to $N$ equally spaced points on the $S^{1}$. Finally, we present Chui's conjecture, prove a partial result and show how it leads to an interesting consequence about function approximation in the Bergman space. |
Note: | Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Jordi Marzo Sánchez |
URI: | https://hdl.handle.net/2445/217049 |
Appears in Collections: | Màster Oficial - Matemàtica Avançada |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfm_arribas_viera_david.pdf | Memòria | 742.83 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License