Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217437
Title: | Rotation Bounds for Hölder Continuous Homeomorphisms with Integrable Distortion |
Author: | Clop, Albert Hitruhin, Lauri Sengupta, Banhirup |
Keywords: | Teoria geomètrica de funcions Funcions de variables complexes Desigualtats (Matemàtica) Geometric function theory Functions of complex variables Inequalities (Mathematics) |
Issue Date: | 25-May-2022 |
Publisher: | Springer Verlag |
Abstract: | We obtain sharp rotation bounds for the subclass of homeomorphisms $f: \mathbb{C} \rightarrow \mathbb{C}$ of finite distortion which have distortion function in $L_{l o c}^p, p>1$, and for which a Hölder continuous inverse is available. The interest in this class is partially motivated by examples arising from fluid mechanics. Our rotation bounds hereby presented improve the existing ones, for which the Hölder continuity is not assumed. We also present examples proving sharpness. |
Note: | Reproducció del document publicat a: https://doi.org/10.1007/s12220-022-00950-y |
It is part of: | Journal of Geometric Analysis, 2022, vol. 32, num.8 |
URI: | https://hdl.handle.net/2445/217437 |
Related resource: | https://doi.org/10.1007/s12220-022-00950-y |
ISSN: | 1050-6926 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
870011.pdf | 324.15 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License