Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217437
Title: Rotation Bounds for Hölder Continuous Homeomorphisms with Integrable Distortion
Author: Clop, Albert
Hitruhin, Lauri
Sengupta, Banhirup
Keywords: Teoria geomètrica de funcions
Funcions de variables complexes
Desigualtats (Matemàtica)
Geometric function theory
Functions of complex variables
Inequalities (Mathematics)
Issue Date: 25-May-2022
Publisher: Springer Verlag
Abstract: We obtain sharp rotation bounds for the subclass of homeomorphisms $f: \mathbb{C} \rightarrow \mathbb{C}$ of finite distortion which have distortion function in $L_{l o c}^p, p>1$, and for which a Hölder continuous inverse is available. The interest in this class is partially motivated by examples arising from fluid mechanics. Our rotation bounds hereby presented improve the existing ones, for which the Hölder continuity is not assumed. We also present examples proving sharpness.
Note: Reproducció del document publicat a: https://doi.org/10.1007/s12220-022-00950-y
It is part of: Journal of Geometric Analysis, 2022, vol. 32, num.8
URI: https://hdl.handle.net/2445/217437
Related resource: https://doi.org/10.1007/s12220-022-00950-y
ISSN: 1050-6926
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870011.pdf324.15 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons