Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217513
Title: | Sawyer-type inequalities for Lorentz spaces |
Author: | Pérez Moreno, Carlos Roure Perdices, Eduard |
Keywords: | Espais de Lorentz Anàlisi harmònica Lorentz spaces Harmonic analysis |
Issue Date: | 21-Jul-2021 |
Publisher: | Springer Verlag |
Abstract: | The Hardy-Littlewood maximal operator $M$ satisfies the classical Sawyer-type estimate $$ \left\|\frac{M f}{v}\right\|_{L^{1, \infty}(u v)} \leq C_{u, v}\|f\|_{L^1(u)} $$ where $u \in A_1$ and $u v \in A_{\infty}$. We prove a novel extension of this result to the general restricted weak type case. That is, for $p>1, u \in A_p^{\mathcal{R}}$, and $u v^p \in A_{\infty}$, $$ \left\|\frac{M f}{v}\right\|_{L^{p, \infty}\left(u v^p\right)} \leq C_{u, v}\|f\|_{L^{p, 1}(u)} $$ From these estimates, we deduce new weighted restricted weak type bounds and Sawyertype inequalities for the $m$-fold product of Hardy-Littlewood maximal operators. We also present an innovative technique that allows us to transfer such estimates to a large class of multi-variable operators, including m-linear Calderón-Zygmund operators, avoiding the $A_{\infty}$ extrapolation theorem and producing many estimates that have not appeared in the literature before. In particular, we obtain a new characterization of $A_p^{\mathcal{R}}$. Furthermore, we introduce the class of weights that characterizes the restricted weak type bounds for the multi(sub)linear maximal operator $\mathcal{M}$, denoted by $A_{\mathbf{P}}^{\mathcal{R}}$, establish analogous bounds for sparse operators and $m$-linear Calderón-Zygmund operators, and study the corresponding multi-variable Sawyer-type inequalities for such operators and weights. Our results combine mixed restricted weak type norm inequalities, $A_p^{\mathcal{R}}$ and $A_{\mathbf{P}}^{\mathcal{R}}$ weights, and Lorentz spaces. |
Note: | Reproducció del document publicat a: https://doi.org/10.1007/s00208-021-02240-4 |
It is part of: | Mathematische Annalen, 2021, vol. 383, num.1-2, p. 493-528 |
URI: | https://hdl.handle.net/2445/217513 |
Related resource: | https://doi.org/10.1007/s00208-021-02240-4 |
ISSN: | 0025-5831 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
870091.pdf | 531.64 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License