Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217521
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDyakonov, Konstantin M.-
dc.date.accessioned2025-01-15T11:25:56Z-
dc.date.available2025-01-15T11:25:56Z-
dc.date.issued2022-06-04-
dc.identifier.issn0001-8708-
dc.identifier.urihttps://hdl.handle.net/2445/217521-
dc.description.abstractThe Hardy space $H^1$ consists of the integrable functions $f$ on the unit circle whose Fourier coefficients $\widehat{f}(k)$ vanish for $k<0$. We are concerned with $H^1$ functions that have some additional (finitely many) holes in the spectrum, so we fix a finite set $\mathscr{K}$ of positive integers and consider the "punctured" Hardy space $$ H_{\mathscr{K}}^1:=\left\{f \in H^1: \widehat{f}(k)=0 \text { for all } k \in \mathscr{K}\right\} $$ We then investigate the geometry of the unit ball in $H_{\mathscr{X}}^1$. In particular, the extreme points of the ball are identified as those unit-norm functions in $H_{\mathscr{X}}^1$ which are not too far from being outer (in the appropriate sense). This extends a theorem of de Leeuw and Rudin that deals with the classical $H^1$ and characterizes its extreme points as outer functions. We also discuss exposed points of the unit ball in $H_{\mathscr{X}}^1$.-
dc.format.extent22 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.aim.2022.108330-
dc.relation.ispartofAdvances in Mathematics, 2022, vol. 401-
dc.relation.urihttps://doi.org/10.1016/j.aim.2022.108330-
dc.rightscc-by-nc-nd (c) Konstantin M. Dyakonov, 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationEspais de Hardy-
dc.subject.classificationFuncions de variables complexes-
dc.subject.classificationAnàlisi harmònica-
dc.subject.otherHardy spaces-
dc.subject.otherFunctions of complex variables-
dc.subject.otherHarmonic analysis-
dc.titleNearly outer functions as extreme points in punctured Hardy spaces-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.date.updated2025-01-15T11:25:56Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870211.pdf415.23 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons