Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217559
Title: | Pointwise descriptions of nearly incompressible vector fields with bounded curl |
Author: | Clop, Albert Sengupta, Banhirup |
Keywords: | Equacions diferencials Teoria geomètrica de funcions Differential equations Geometric function theory |
Issue Date: | 15-Aug-2022 |
Publisher: | Elsevier |
Abstract: | Among those nearly incompressible vector fields $\mathbf{v}: \mathbb{R}^n \rightarrow \mathbb{R}^n$ with $|x| \log |x|$ growth at infinity, we give a pointwise characterization of the ones for which curl $\mathbf{v}=D \mathbf{v}-D^t \mathbf{v}$ belongs to $L^{\infty}$. When $n=2$ we can go further and describe, still in pointwise terms, the vector fields $\mathbf{v}: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ for which $|\operatorname{div} \mathbf{v}|+|\operatorname{curl} \mathbf{v}| \in L^{\infty}$. |
Note: | Reproducció del document publicat a: https://doi.org/10.1016/j.jmaa.2022.126170 |
It is part of: | Journal of Mathematical Analysis and Applications, 2022, vol. 512, num.2 |
URI: | https://hdl.handle.net/2445/217559 |
Related resource: | https://doi.org/10.1016/j.jmaa.2022.126170 |
ISSN: | 0022-247X |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
870213.pdf | 559.66 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License