Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217559
Title: Pointwise descriptions of nearly incompressible vector fields with bounded curl
Author: Clop, Albert
Sengupta, Banhirup
Keywords: Equacions diferencials
Teoria geomètrica de funcions
Differential equations
Geometric function theory
Issue Date: 15-Aug-2022
Publisher: Elsevier
Abstract: Among those nearly incompressible vector fields $\mathbf{v}: \mathbb{R}^n \rightarrow \mathbb{R}^n$ with $|x| \log |x|$ growth at infinity, we give a pointwise characterization of the ones for which curl $\mathbf{v}=D \mathbf{v}-D^t \mathbf{v}$ belongs to $L^{\infty}$. When $n=2$ we can go further and describe, still in pointwise terms, the vector fields $\mathbf{v}: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ for which $|\operatorname{div} \mathbf{v}|+|\operatorname{curl} \mathbf{v}| \in L^{\infty}$.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.jmaa.2022.126170
It is part of: Journal of Mathematical Analysis and Applications, 2022, vol. 512, num.2
URI: https://hdl.handle.net/2445/217559
Related resource: https://doi.org/10.1016/j.jmaa.2022.126170
ISSN: 0022-247X
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870213.pdf559.66 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons