Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217593
Title: Markov chain approximations for nonsymmetric processes
Author: Weidner, Marvin
Keywords: Operadors diferencials
Teoremes de límit (Teoria de probabilitats)
Convergència (Matemàtica)
Processos de Markov
Differential operators
Limit theorems (Probability theory)
Convergence
Markov processes
Issue Date: Apr-2023
Publisher: Elsevier B.V.
Abstract: The aim of this article is to prove that diffusion processes in $\mathbb{R}^d$ with a drift can be approximated by suitable Markov chains on $n^{-1} \mathbb{Z}^d$. Moreover, we investigate sufficient conditions on the edge weights which guarantee convergence of the associated Markov chains to such Markov processes. Analogous questions are answered for a large class of nonsymmetric jump processes. The proofs of our results rely on regularity estimates for weak solutions to the corresponding nonsymmetric parabolic equations and Dirichlet form techniques.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.spa.2023.01.009
It is part of: Stochastic Processes and their Applications, 2023, vol. 158, p. 238-281
URI: https://hdl.handle.net/2445/217593
Related resource: https://doi.org/10.1016/j.spa.2023.01.009
ISSN: 0304-4149
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870316.pdf1.84 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons