Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217593
Title: | Markov chain approximations for nonsymmetric processes |
Author: | Weidner, Marvin |
Keywords: | Operadors diferencials Teoremes de límit (Teoria de probabilitats) Convergència (Matemàtica) Processos de Markov Differential operators Limit theorems (Probability theory) Convergence Markov processes |
Issue Date: | Apr-2023 |
Publisher: | Elsevier B.V. |
Abstract: | The aim of this article is to prove that diffusion processes in $\mathbb{R}^d$ with a drift can be approximated by suitable Markov chains on $n^{-1} \mathbb{Z}^d$. Moreover, we investigate sufficient conditions on the edge weights which guarantee convergence of the associated Markov chains to such Markov processes. Analogous questions are answered for a large class of nonsymmetric jump processes. The proofs of our results rely on regularity estimates for weak solutions to the corresponding nonsymmetric parabolic equations and Dirichlet form techniques. |
Note: | Reproducció del document publicat a: https://doi.org/10.1016/j.spa.2023.01.009 |
It is part of: | Stochastic Processes and their Applications, 2023, vol. 158, p. 238-281 |
URI: | https://hdl.handle.net/2445/217593 |
Related resource: | https://doi.org/10.1016/j.spa.2023.01.009 |
ISSN: | 0304-4149 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
870316.pdf | 1.84 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License