Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217650
Title: On the basin of attraction of a critical three-cycle of a model for the secant map
Author: Fontich, Ernest, 1955-
Garijo Real, Antonio
Jarque i Ribera, Xavier
Keywords: Sistemes dinàmics diferenciables
Varietats (Matemàtica)
Differentiable dynamical systems
Manifolds (Mathematics)
Issue Date: 24-Sep-2024
Publisher: American Institute of Mathematical Sciences (AIMS)
Abstract: We consider the secant method $S_p$ applied to a  real polynomial $p$ of degree $d+1$ as a discrete dynamical system on $\mathbb R^2$. If the polynomial $p$ has a local extremum at a point $\alpha$ then the discrete dynamical system generated by the iterates of the secant map exhibits a critical periodic orbit of period 3 or three-cycle at the point $(\alpha,\alpha)$. We propose a simple model map $T_{a,d}$ having a unique fixed point at the origin which encodes the dynamical behaviour of $S_p^3$ at the critical three-cycle. The main goal of the paper is to describe the geometry and topology of the basin of attraction of the origin of $T_{a,d}$ as well as its boundary. Our results concern global, rather than local, dynamical behaviour. They include that the boundary of the basin of attraction is the stable manifold of a fixed point or contains the stable manifold of a two-cycle, depending on the values of the parameters of $d$ (even or odd) and $a\in \mathbb R$ (positive or negative).
Note: Versió postprint del document publicat a: https://doi.org/10.3934/dcds.2024122
It is part of: Discrete and Continuous Dynamical Systems-Series A, 2024, vol. 45, num.4, p. 1045-1078
URI: https://hdl.handle.net/2445/217650
Related resource: https://doi.org/10.3934/dcds.2024122
ISSN: 1078-0947
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
872356.pdf651.12 kBAdobe PDFView/Open    Request a copy


Embargat   Document embargat fins el 23-9-2025


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.