Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217654| Title: | Newton-Like Components in the Chebyshev–Halley Family of Degree $n$Polynomials |
| Author: | Paraschiv, Dan |
| Keywords: | Sistemes dinàmics complexos Funcions holomorfes Funcions de variables complexes Complex dynamical systems Holomorphic functions Functions of complex variables |
| Issue Date: | 4-Mar-2023 |
| Publisher: | Springer Verlag |
| Abstract: | We study the Chebyshev-Halley methods applied to the family of polynomials $f_{n, c}(z)=z^n+c$, for $n \geq 2$ and $c \in \mathbb{C}^*$. We prove the existence of parameters such that the immediate basins of attraction corresponding to the roots of unity are infinitely connected. We also prove that, for $n \geq 2$, the corresponding dynamical plane contains a connected component of the Julia set, which is a quasiconformal deformation of the Julia set of the map obtained by applying Newton's method to $f_{n,-1}$. |
| Note: | Reproducció del document publicat a: https://doi.org/10.1007/s00009-023-02335-z |
| It is part of: | Mediterranean Journal of Mathematics, 2023, vol. 20, num.3 |
| URI: | https://hdl.handle.net/2445/217654 |
| Related resource: | https://doi.org/10.1007/s00009-023-02335-z |
| ISSN: | 1660-5446 |
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 870386.pdf | 1.14 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License
