Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217654
Title: Newton-Like Components in the Chebyshev–Halley Family of Degree $n$Polynomials
Author: Paraschiv, Dan
Keywords: Sistemes dinàmics complexos
Funcions holomorfes
Funcions de variables complexes
Complex dynamical systems
Holomorphic functions
Functions of complex variables
Issue Date: 4-Mar-2023
Publisher: Springer Verlag
Abstract: We study the Chebyshev-Halley methods applied to the family of polynomials $f_{n, c}(z)=z^n+c$, for $n \geq 2$ and $c \in \mathbb{C}^*$. We prove the existence of parameters such that the immediate basins of attraction corresponding to the roots of unity are infinitely connected. We also prove that, for $n \geq 2$, the corresponding dynamical plane contains a connected component of the Julia set, which is a quasiconformal deformation of the Julia set of the map obtained by applying Newton's method to $f_{n,-1}$.
Note: Reproducció del document publicat a: https://doi.org/10.1007/s00009-023-02335-z
It is part of: Mediterranean Journal of Mathematics, 2023, vol. 20, num.3
URI: https://hdl.handle.net/2445/217654
Related resource: https://doi.org/10.1007/s00009-023-02335-z
ISSN: 1660-5446
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870386.pdf1.14 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons