Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217655
Title: On weak-type (1, 1) for averaging type operators
Author: Baena Miret, Sergi
Carro Rossell, María Jesús
Keywords: Anàlisi harmònica
Anàlisi funcional
Teoria d'operadors
Transformacions de Fourier
Harmonic analysis
Functional analysis
Operator theory
Fourier transformations
Issue Date: 15-May-2023
Publisher: Elsevier
Abstract: It is known that, due to the fact that $L^{1, \infty}$ is not a Banach space, if $\left(T_j\right)_j$ is a sequence of bounded operators so that $$ T_j: L^1 \longrightarrow L^{1, \infty} $$ with norm less than or equal to $\left\|T_j\right\|$ and $\sum_j\left\|T_j\right\|<\infty$, nothing can be said about the operator $T=\sum_j T_j$. This is the origin of many difficult and open problems. However, if we assume that $$ T_j: L^1(u) \longrightarrow L^{1, \infty}(u), \quad \forall u \in A_1 $$ with norm less than or equal to $\varphi\left(\|u\|_{A_1}\right)\left\|T_j\right\|$, where $\varphi$ is a nondecreasing function and $A_1$ the Muckenhoupt class of weights, then we prove that, essentially, $$ T: L^1(u) \longrightarrow L^{1, \infty}(u), \quad \forall u \in A_1 $$ We shall see that this is the case of many interesting problems in Harmonic Analysis.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.jfa.2023.109902
It is part of: Journal of Functional Analysis, 2023, vol. 284, num.10
URI: https://hdl.handle.net/2445/217655
Related resource: https://doi.org/10.1016/j.jfa.2023.109902
ISSN: 0022-1236
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870326.pdf432.49 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons