Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217655
Title: | On weak-type (1, 1) for averaging type operators |
Author: | Baena Miret, Sergi Carro Rossell, María Jesús |
Keywords: | Anàlisi harmònica Anàlisi funcional Teoria d'operadors Transformacions de Fourier Harmonic analysis Functional analysis Operator theory Fourier transformations |
Issue Date: | 15-May-2023 |
Publisher: | Elsevier |
Abstract: | It is known that, due to the fact that $L^{1, \infty}$ is not a Banach space, if $\left(T_j\right)_j$ is a sequence of bounded operators so that $$ T_j: L^1 \longrightarrow L^{1, \infty} $$ with norm less than or equal to $\left\|T_j\right\|$ and $\sum_j\left\|T_j\right\|<\infty$, nothing can be said about the operator $T=\sum_j T_j$. This is the origin of many difficult and open problems. However, if we assume that $$ T_j: L^1(u) \longrightarrow L^{1, \infty}(u), \quad \forall u \in A_1 $$ with norm less than or equal to $\varphi\left(\|u\|_{A_1}\right)\left\|T_j\right\|$, where $\varphi$ is a nondecreasing function and $A_1$ the Muckenhoupt class of weights, then we prove that, essentially, $$ T: L^1(u) \longrightarrow L^{1, \infty}(u), \quad \forall u \in A_1 $$ We shall see that this is the case of many interesting problems in Harmonic Analysis. |
Note: | Reproducció del document publicat a: https://doi.org/10.1016/j.jfa.2023.109902 |
It is part of: | Journal of Functional Analysis, 2023, vol. 284, num.10 |
URI: | https://hdl.handle.net/2445/217655 |
Related resource: | https://doi.org/10.1016/j.jfa.2023.109902 |
ISSN: | 0022-1236 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
870326.pdf | 432.49 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License