Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217659
Title: Inducing braces and Hopf Galois structures
Author: Crespo Vicente, Teresa
Gil Muñoz, Daniel
Rio, Anna
Vela del Olmo, Ma. Montserrat (Maria Montserrat)
Keywords: Àlgebres de Hopf
Grups de permutacions
Extensions de cossos (Matemàtica)
Hopf algebras
Permutation groups
Field extensions (Mathematics)
Issue Date: 1-Sep-2023
Publisher: Elsevier B.V.
Abstract: Let $p$ be a prime number and let $n$ be an integer not divisible by $p$ and such that every group of order $n p$ has a normal subgroup of order $p$. (This holds in particular for $p>n$.) Under these hypotheses, we obtain a one-to-one correspondence between the isomorphism classes of braces of size $n p$ and the set of pairs $\left(B_n,[\tau]\right)$, where $B_n$ runs over the isomorphism classes of braces of size $n$ and $[\tau]$ runs over the classes of group morphisms from the multiplicative group of $B_n$ to $\mathbf{Z}_p^*$ under a certain equivalence relation. This correspondence gives the classification of braces of size $n p$ from the one of braces of size $n$. From this result we derive a formula giving the number of Hopf Galois structures of abelian type $\mathbf{Z}_p \times E$ on a Galois extension of degree $n p$ in terms of the number of Hopf Galois structures of abelian type $E$ on a Galois extension of degree $n$. For a prime number $p \geq 7$, we apply the obtained results to describe all left braces of size $12 p$ and determine the number of Hopf Galois structures of abelian type on a Galois extension of degree $12 p$.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.jpaa.2023.107371
It is part of: Journal of Pure and Applied Algebra, 2023, vol. 227, num.9
URI: https://hdl.handle.net/2445/217659
Related resource: https://doi.org/10.1016/j.jpaa.2023.107371
ISSN: 0022-4049
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870252.pdf393.94 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons