Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217659
Title: | Inducing braces and Hopf Galois structures |
Author: | Crespo Vicente, Teresa Gil Muñoz, Daniel Rio, Anna Vela del Olmo, Ma. Montserrat (Maria Montserrat) |
Keywords: | Àlgebres de Hopf Grups de permutacions Extensions de cossos (Matemàtica) Hopf algebras Permutation groups Field extensions (Mathematics) |
Issue Date: | 1-Sep-2023 |
Publisher: | Elsevier B.V. |
Abstract: | Let $p$ be a prime number and let $n$ be an integer not divisible by $p$ and such that every group of order $n p$ has a normal subgroup of order $p$. (This holds in particular for $p>n$.) Under these hypotheses, we obtain a one-to-one correspondence between the isomorphism classes of braces of size $n p$ and the set of pairs $\left(B_n,[\tau]\right)$, where $B_n$ runs over the isomorphism classes of braces of size $n$ and $[\tau]$ runs over the classes of group morphisms from the multiplicative group of $B_n$ to $\mathbf{Z}_p^*$ under a certain equivalence relation. This correspondence gives the classification of braces of size $n p$ from the one of braces of size $n$. From this result we derive a formula giving the number of Hopf Galois structures of abelian type $\mathbf{Z}_p \times E$ on a Galois extension of degree $n p$ in terms of the number of Hopf Galois structures of abelian type $E$ on a Galois extension of degree $n$. For a prime number $p \geq 7$, we apply the obtained results to describe all left braces of size $12 p$ and determine the number of Hopf Galois structures of abelian type on a Galois extension of degree $12 p$. |
Note: | Reproducció del document publicat a: https://doi.org/10.1016/j.jpaa.2023.107371 |
It is part of: | Journal of Pure and Applied Algebra, 2023, vol. 227, num.9 |
URI: | https://hdl.handle.net/2445/217659 |
Related resource: | https://doi.org/10.1016/j.jpaa.2023.107371 |
ISSN: | 0022-4049 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
870252.pdf | 393.94 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License