Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217696
Title: Machine Learning-Driven Discovery of Key Descriptors for CO2 Activation over Two-Dimensional Transition Metal Carbides and Nitrides
Author: Abraham, B. Moses
Piqué, Oriol
Khan, Mohd Aamir
Viñes Solana, Francesc
Illas i Riera, Francesc
Singh, Jayant K.
Keywords: Teoria del funcional de densitat
Diòxid de carboni
Metalls de transició
Density functionals
Carbon dioxide
Transition metals
Issue Date: 19-Jun-2023
Publisher: American Chemical Society
Abstract: Fusing high-throughput quantum mechanical screening techniques with modern artificial intelligence strategies is among the most fundamental ─yet revolutionary─ science activities, capable of opening new horizons in catalyst discovery. Here, we apply this strategy to the process of finding appropriate key descriptors for CO2 activation over two-dimensional transition metal (TM) carbides/nitrides (MXenes). Various machine learning (ML) models are developed to screen over 114 pure and defective MXenes, where the random forest regressor (RFR) ML scheme exhibits the best predictive performance for the CO2 adsorption energy, with a mean absolute error ± standard deviation of 0.16 ± 0.01 and 0.42 ± 0.06 eV for training and test data sets, respectively. Feature importance analysis revealed d-band center (εd), surface metal electronegativity (χM), and valence electron number of metal atoms (MV) as key descriptors for CO2 activation. These findings furnish a fundamental basis for designing novel MXene-based catalysts through the prediction of potential indicators for CO2 activation and their posterior usage.
Note: Reproducció del document publicat a: https://doi.org/10.1021/acsami.3c02821
It is part of: ACS Applied Materials & Interfaces, 2023, vol. 15, num.25, p. 30117-30126
URI: https://hdl.handle.net/2445/217696
Related resource: https://doi.org/10.1021/acsami.3c02821
ISSN: 1944-8244
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
826781.pdf7.88 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons