Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217730
Title: Forgetful Swarm Optimization for Astronomical Observation Scheduling
Author: Nakhjiri, Nariman
Salamó Llorente, Maria
Sànchez i Marrè, Miquel, 1964-
Blum, Christian
Morales, Juan Carlos
Keywords: Intel·ligència artificial
Aprenentatge automàtic
Algorismes computacionals
Artificial intelligence
Machine learning
Computer algorithms
Issue Date: 5-Nov-2024
Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Abstract: In this paper, we propose a novel metaheuristic algorithm called Forgetful Swarm Optimization(FSO) for Astronomical Observation Scheduling (AOS), a type of combinatorial optimization problemdefined by the tasks and constraints assigned to the telescopes and other devices involved in astrophysicalresearch. FSO combines local optimization, Destroy and Repair, and Swarm Intelligence methodologies tocreate a flexible and scalable global optimization algorithm to handle the challenges of AOS. The proposalis adapted to the well-justified scenarios of the Ariel Space Mission problem, a particular example of AOS,and compared with previous algorithms that are applied to it including an Evolutionary Algorithm (EA),an Iterated Local Search (ILS), a multi-start metaheuristic, a Tabu Search, and a Hill-Climbing greedyalgorithm. The experimental evaluation demonstrates that FSO consistently outperforms other algorithmsin objective completeness, up to 8.4% on average, for all instances of the problem regardless of dimensionsand complexity. Additionally, it has significantly less computational cost than ILS and the base models of aglobal optimization algorithm such as EA.
Note: Reproducció del document publicat a: https://doi.org/10.1109/ACCESS.2024.3492100
It is part of: IEEE Access, 2024, vol. 12, p. 171644-171661
URI: https://hdl.handle.net/2445/217730
Related resource: https://doi.org/10.1109/ACCESS.2024.3492100
ISSN: 2169-3536
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
875744.pdf2.49 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons