Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217911
Title: | Machine learning data augmentation strategy for electron energy loss spectroscopy: generative adversarial networks |
Author: | Bueno del Pozo, Daniel Yedra, Lluis Kepaptsoglou, Demie Ramasse, Quentin Peiró Martínez, Francisca Estradé Albiol, Sònia |
Keywords: | Aprenentatge automàtic Espectroscòpia de pèrdua d'energia d'electrons Machine learning Electron energy loss spectroscopy |
Issue Date: | 29-Apr-2024 |
Publisher: | Cambridge University Press (CUP) |
Abstract: | Recent advances in machine learning (ML) have highlighted a novel challenge concerning the quality and quantity of data required to effectively train algorithms in supervised ML procedures. This article introduces a data augmentation (DA) strategy for electron energy loss spectroscopy (EELS) data, employing generative adversarial networks (GANs). We present an innovative approach, called the data augmentation generative adversarial network (DAG), which facilitates data generation from a very limited number of spectra, around 100. Throughout this study, we explore the optimal configuration for GANs to produce realistic spectra. Notably, our DAG generates realistic spectra, and the spectra produced by the generator are successfully used in real-world applications to train classifiers based on artificial neural networks (ANNs) and support vector machines (SVMs) that have been successful in classifying experimental EEL spectra. |
Note: | Reproducció del document publicat a: https://doi.org/10.1093/mam/ozae014 |
It is part of: | Microscopy and Microanalysis, 2024, vol. 30, p. 278-293 |
URI: | https://hdl.handle.net/2445/217911 |
Related resource: | https://doi.org/10.1093/mam/ozae014 |
ISSN: | 1431-9276 |
Appears in Collections: | Articles publicats en revistes (Enginyeria Electrònica i Biomèdica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
875500.pdf | 5.28 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License