Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217911
Title: Machine learning data augmentation strategy for electron energy loss spectroscopy: generative adversarial networks
Author: Bueno del Pozo, Daniel
Yedra, Lluis
Kepaptsoglou, Demie
Ramasse, Quentin
Peiró Martínez, Francisca
Estradé Albiol, Sònia
Keywords: Aprenentatge automàtic
Espectroscòpia de pèrdua d'energia d'electrons
Machine learning
Electron energy loss spectroscopy
Issue Date: 29-Apr-2024
Publisher: Cambridge University Press (CUP)
Abstract: Recent advances in machine learning (ML) have highlighted a novel challenge concerning the quality and quantity of data required to effectively train algorithms in supervised ML procedures. This article introduces a data augmentation (DA) strategy for electron energy loss spectroscopy (EELS) data, employing generative adversarial networks (GANs). We present an innovative approach, called the data augmentation generative adversarial network (DAG), which facilitates data generation from a very limited number of spectra, around 100. Throughout this study, we explore the optimal configuration for GANs to produce realistic spectra. Notably, our DAG generates realistic spectra, and the spectra produced by the generator are successfully used in real-world applications to train classifiers based on artificial neural networks (ANNs) and support vector machines (SVMs) that have been successful in classifying experimental EEL spectra.
Note: Reproducció del document publicat a: https://doi.org/10.1093/mam/ozae014
It is part of: Microscopy and Microanalysis, 2024, vol. 30, p. 278-293
URI: https://hdl.handle.net/2445/217911
Related resource: https://doi.org/10.1093/mam/ozae014
ISSN: 1431-9276
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
875500.pdf5.28 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons