Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/218045
Title: Predicting the generalization gap in neural networks using topological data analysis
Author: Ballester Bautista, Rubén
Arnal i Clemente, Xavier
Casacuberta, Carles
Madadi, Meysam
Corneanu, Ciprian Adrian
Escalera Guerrero, Sergio
Keywords: Topologia
Aprenentatge automàtic
Xarxes neuronals (Informàtica)
Topology
Machine learning
Neural networks (Computer science)
Issue Date: 1-Sep-2024
Publisher: Elsevier B.V.
Abstract: Understanding how neural networks generalize on unseen data is crucial for designing more robust and reliable models. In this paper, we study the generalization gap of neural networks using methods from topological data analysis. For this purpose, we compute homological persistence diagrams of weighted graphs constructed from neuron activation correlations after a training phase, aiming to capture patterns that are linked to the generalization capacity of the network. We compare the usefulness of different numerical summaries from persistence diagrams and show that a combination of some of them can accurately predict and partially explain the generalization gap without the need of a test set. Evaluation on two computer vision recognition tasks (CIFAR10 and SVHN) shows competitive generalization gap prediction when compared against state-of-the-art methods.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.neucom.2024.127787
It is part of: Neurocomputing, 2024, vol. 596
URI: https://hdl.handle.net/2445/218045
Related resource: https://doi.org/10.1016/j.neucom.2024.127787
ISSN: 0925-2312
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
859689.pdf2.6 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons