Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/218045
Title: | Predicting the generalization gap in neural networks using topological data analysis |
Author: | Ballester Bautista, Rubén Arnal i Clemente, Xavier Casacuberta, Carles Madadi, Meysam Corneanu, Ciprian Adrian Escalera Guerrero, Sergio |
Keywords: | Topologia Aprenentatge automàtic Xarxes neuronals (Informàtica) Topology Machine learning Neural networks (Computer science) |
Issue Date: | 1-Sep-2024 |
Publisher: | Elsevier B.V. |
Abstract: | Understanding how neural networks generalize on unseen data is crucial for designing more robust and reliable models. In this paper, we study the generalization gap of neural networks using methods from topological data analysis. For this purpose, we compute homological persistence diagrams of weighted graphs constructed from neuron activation correlations after a training phase, aiming to capture patterns that are linked to the generalization capacity of the network. We compare the usefulness of different numerical summaries from persistence diagrams and show that a combination of some of them can accurately predict and partially explain the generalization gap without the need of a test set. Evaluation on two computer vision recognition tasks (CIFAR10 and SVHN) shows competitive generalization gap prediction when compared against state-of-the-art methods. |
Note: | Reproducció del document publicat a: https://doi.org/10.1016/j.neucom.2024.127787 |
It is part of: | Neurocomputing, 2024, vol. 596 |
URI: | https://hdl.handle.net/2445/218045 |
Related resource: | https://doi.org/10.1016/j.neucom.2024.127787 |
ISSN: | 0925-2312 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
859689.pdf | 2.6 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License