Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/218179
Title: Strategies for EELS data analysis. Introducing UMAP and HDBSCAN for dimensionality reduction and clustering.
Author: Blanco Portals, Javier
Peiró Martínez, Francisca
Estradé Albiol, Sònia
Keywords: Espectroscòpia de pèrdua d'energia d'electrons
Reducció química
Densitat
Electron energy loss spectroscopy
Reduction (Chemistry)
Density
Issue Date: Feb-2022
Publisher: Cambridge University Press (CUP)
Abstract: Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electron energy loss spectroscopy (EELS) spectrum images. The performances of UMAP and HDBSCAN are systematically compared to the other clustering analysis approaches used in EELS in the literature using a known synthetic dataset. Better results are found for these new approaches. Furthermore, UMAP and HDBSCAN are showcased in a real experimental dataset from a core-shell nanoparticle of iron and manganese oxides, as well as the triple combination nonnegative matrix factorization-UMAP-HDBSCAN. The results obtained indicate how the complementary use of different combinations may be beneficial in a real-case scenario to attain a complete picture, as different algorithms highlight different aspects of the dataset studied.
Note: Versió postprint del document publicat a: https://doi.org/10.1017/S1431927621013696
It is part of: Microscopy and Microanalysis, 2022, vol. 28, p. 109-122
URI: https://hdl.handle.net/2445/218179
Related resource: https://doi.org/10.1017/S1431927621013696
ISSN: 1431-9276
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
243339.pdf626.51 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.