Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/218514
Title: Photocatalytic magnetic microgyroscopes with activity-tunable precessional dynamics
Author: Boniface, Dolachai
Straube, Arthur V.
Tierno, Pietro
Keywords: Propietats magnètiques
Col·loides
Nanopartícules
Magnetic properties
Colloids
Nanoparticles
Issue Date: 11-Nov-2024
Publisher: American Chemical Society
Abstract: Magnetic nano/microrotors are passive elements spinning around an axis due to an external rotating field while remaining confined to a plane. They have been used to date in different applications related to fluid mixing, drug delivery, or biomedicine. Here we realize an active version of a magnetic microgyroscope which is simultaneously driven by a photoactivated catalytic reaction and a rotating magnetic field. We investigate the uplift dynamics of this colloidal spinner when it precesses around its long axis while self-propelling due to the light induced decomposition of hydrogen peroxide in water. By combining experiments with theory, we show that activity emerging from the cooperative action of phoretic and osmotic forces effectively increases the gravitational torque, which counteracts the magnetic and viscous ones, and carefully measure its contribution. Finally, we demonstrate that by modulating the field amplitude, one can induce hysteresis loops in the uplift dynamics of the spinners.
Note: Reproducció del document publicat a: https://doi.org/10.1021/acs.nanolett.4c03386
It is part of: Nano Letters, 2024, vol. 24, p. 14950-14956
URI: https://hdl.handle.net/2445/218514
Related resource: https://doi.org/10.1021/acs.nanolett.4c03386
ISSN: 1530-6984
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
877982.pdf3.8 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons