Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/218955
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cascante, Ma. Carme (Maria Carme) | - |
dc.contributor.author | Fàbrega Casamitjana, Joan | - |
dc.contributor.author | Pascuas Tijero, Daniel | - |
dc.contributor.author | Peláez Márquez, José Ángel | - |
dc.date.accessioned | 2025-02-19T09:19:35Z | - |
dc.date.available | 2025-02-19T09:19:35Z | - |
dc.date.issued | 2024-12-15 | - |
dc.identifier.issn | 0022-1236 | - |
dc.identifier.uri | https://hdl.handle.net/2445/218955 | - |
dc.description.abstract | <p>In \cite{Aleman:Cascante:Fabrega:Pascuas:Pelaez} it is shown that the Bloch space $\mathcal{B}$ in the unit disc has the following </p><p>radicality property: if an analytic function $g$ satisfies that $g^n\in \mathcal{B}$, then $g^m\in \mathcal{B}$, for all $m\le n$. Since $\mathcal{B}$ coincides with the space $\mathcal{T}(A^p_\alpha)$ of analytic symbols $g$ such that the Volterra-type operator </p><p>$T_gf(z)= \int_0^z f(\zeta)g'(\zeta)\,d\zeta$</p><p> is bounded on the classical weighted Bergman space $A^p_\alpha$, the radicality property was used to study the composition of paraproducts $T_g$ and $S_gf=T_fg$ on $A^p_{\alpha}$. Motivated by this fact, we prove that $\mathcal{T}(A^p_\omega)$ also has the radicality property, for any radial weight $\omega$. Unlike the classical case, </p><p>the lack of a precise description of $\mathcal{T}(A^p_\omega)$ for a general radial weight, induces us to prove the radicality property for $A^p_\omega$ from precise norm-operator results for compositions of analytic paraproducts.</p> | - |
dc.format.extent | 29 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/https://doi.org/10.1016/j.jfa.2024.110658 | - |
dc.relation.ispartof | Journal of Functional Analysis, 2024, vol. 287, num.12 | - |
dc.relation.uri | https://doi.org/https://doi.org/10.1016/j.jfa.2024.110658 | - |
dc.rights | cc by-nc-nd (c) Carme Cascante et al., 2024 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | - |
dc.subject.classification | Espais de Hardy | - |
dc.subject.classification | Operadors integrals | - |
dc.subject.classification | Espais analítics | - |
dc.subject.classification | Funcions de variables complexes | - |
dc.subject.other | Hardy spaces | - |
dc.subject.other | Integral operators | - |
dc.subject.other | Analytic spaces | - |
dc.subject.other | Functions of complex variables | - |
dc.title | On the radicality property for spaces of symbols of bounded Volterra operators | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 754563 | - |
dc.date.updated | 2025-02-19T09:19:36Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
879429.pdf | 539.35 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License