Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/218959
Title: Chaotic Dynamics at the Boundary of a Basin of Attractionvia Non-transversal Intersections for a Non-global SmoothDiffeomorphism
Author: Fontich, Ernest, 1955-
Garijo Real, Antonio
Jarque i Ribera, Xavier
Keywords: Varietats (Matemàtica)
Sistemes dinàmics hiperbòlics
Manifolds (Mathematics)
Hyperbolic dynamical systems
Issue Date: 1-Sep-2024
Publisher: Springer Verlag
Abstract: In this paper, we give analytic proofs of the existence of transversal homoclinic points for a family of non-globally smooth diffeomorphisms having the origin as a fixed point which come out as a truncated map governing the local dynamics near a critical period three-cycle associated with the Secant map. Using Moser's version of Birkhoff-Smale's theorem, we prove that the boundary of the basin of attraction of the origin contains a Cantor-like invariant subset such that the restricted dynamics to it is conjugate to the full shift of $N$-symbols for any integer $N \geq 2$ or infinity.
Note: Reproducció del document publicat a: https://doi.org/https://doi.org/10.1007/s00332-024-10079-7
It is part of: Journal of Nonlinear Science, 2024, vol. 34
URI: https://hdl.handle.net/2445/218959
Related resource: https://doi.org/https://doi.org/10.1007/s00332-024-10079-7
ISSN: 0938-8974
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
871148.pdf764.71 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons