Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/219442
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Heredia Lidón, Álvaro | - |
dc.contributor.author | García Mascarel, Christian | - |
dc.contributor.author | Echeverry, Luis Miguel | - |
dc.contributor.author | Herrera Escartín, Daniel | - |
dc.contributor.author | Fortea Ormaechea, Juan | - |
dc.contributor.author | Pomarol-Clotet, Edith | - |
dc.contributor.author | Fatjó-Vilas Mestre, Mar | - |
dc.contributor.author | Martínez Abadías, Neus, 1978- | - |
dc.contributor.author | Sevillano, Xavier | - |
dc.date.accessioned | 2025-03-04T15:23:11Z | - |
dc.date.available | 2025-03-04T15:23:11Z | - |
dc.date.issued | 2024 | - |
dc.identifier.uri | https://hdl.handle.net/2445/219442 | - |
dc.description.abstract | As shape alterations in three-dimensional biological structures are as- sociated to numerous pathological processes, quantitative shape analysis for obtaining phenotypic biomarkers of diagnostic potential has become a prominent research area. In this context, the automatic detection of landmarks on 3D anatomical structures is crucial for developing high-throughput phenotyping tools. This study evaluates the performance of multi-view consensus convolutional networks -originally developed for facial landmarking– in automatically detecting landmarks on three different 3D anatomical structures: the face, the upper respiratory airways and the brain hippocampi. Leveraging magnetic resonance imaging datasets, we trained multiple models and assessed their accuracy against manual annotations, while analyzing the impact of different network hyperparameters on the results. | ca |
dc.format.extent | 4 p. | - |
dc.format.medium | application/pdf | - |
dc.language.iso | eng | ca |
dc.publisher | IOS Press | ca |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.3233/FAIA240438 | - |
dc.relation.ispartof | Capítol del llibre: Alsinet, Teresa, Vilasís, Xavier , García, Daniel, Álvarez, Elena (eds.), Proceedings of the 26th International Conference of the Catalan Association for Artificial Intelligence, IOS Press, 2024, [ISBN 9781643685434], pp. 209-212 | - |
dc.relation.uri | https://doi.org/10.3233/FAIA240438 | - |
dc.rights | cc by-nc (c) Heredia Lidón, Álvaro et al, 2024 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/3.0/es/ | * |
dc.source | Llibres / Capítols de llibre (Biologia Evolutiva, Ecologia i Ciències Ambientals) | - |
dc.subject.classification | Intel·ligència artificial | - |
dc.subject.classification | Marcadors bioquímics | - |
dc.subject.other | Artificial intelligence | - |
dc.subject.other | Biochemical markers | - |
dc.title | Landmark anything: multi-view consensus convolutional networks applied to the 3D landmarking of Anatomical Structures | ca |
dc.type | info:eu-repo/semantics/bookPart | ca |
dc.type | nfo:eu-repo/semantics/publishedVersion | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Llibres / Capítols de llibre (Biologia Evolutiva, Ecologia i Ciències Ambientals) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Heredia et al 2024_Landmark anything.pdf | 340.58 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License