Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219442
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHeredia Lidón, Álvaro-
dc.contributor.authorGarcía Mascarel, Christian-
dc.contributor.authorEcheverry, Luis Miguel-
dc.contributor.authorHerrera Escartín, Daniel-
dc.contributor.authorFortea Ormaechea, Juan-
dc.contributor.authorPomarol-Clotet, Edith-
dc.contributor.authorFatjó-Vilas Mestre, Mar-
dc.contributor.authorMartínez Abadías, Neus, 1978--
dc.contributor.authorSevillano, Xavier-
dc.date.accessioned2025-03-04T15:23:11Z-
dc.date.available2025-03-04T15:23:11Z-
dc.date.issued2024-
dc.identifier.urihttps://hdl.handle.net/2445/219442-
dc.description.abstractAs shape alterations in three-dimensional biological structures are as- sociated to numerous pathological processes, quantitative shape analysis for obtaining phenotypic biomarkers of diagnostic potential has become a prominent research area. In this context, the automatic detection of landmarks on 3D anatomical structures is crucial for developing high-throughput phenotyping tools. This study evaluates the performance of multi-view consensus convolutional networks -originally developed for facial landmarking– in automatically detecting landmarks on three different 3D anatomical structures: the face, the upper respiratory airways and the brain hippocampi. Leveraging magnetic resonance imaging datasets, we trained multiple models and assessed their accuracy against manual annotations, while analyzing the impact of different network hyperparameters on the results.ca
dc.format.extent4 p.-
dc.format.mediumapplication/pdf-
dc.language.isoengca
dc.publisherIOS Pressca
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3233/FAIA240438-
dc.relation.ispartofCapítol del llibre: Alsinet, Teresa, Vilasís, Xavier , García, Daniel, Álvarez, Elena (eds.), Proceedings of the 26th International Conference of the Catalan Association for Artificial Intelligence, IOS Press, 2024, [ISBN 9781643685434], pp. 209-212-
dc.relation.urihttps://doi.org/10.3233/FAIA240438-
dc.rightscc by-nc (c) Heredia Lidón, Álvaro et al, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.sourceLlibres / Capítols de llibre (Biologia Evolutiva, Ecologia i Ciències Ambientals)-
dc.subject.classificationIntel·ligència artificial-
dc.subject.classificationMarcadors bioquímics-
dc.subject.otherArtificial intelligence-
dc.subject.otherBiochemical markers-
dc.titleLandmark anything: multi-view consensus convolutional networks applied to the 3D landmarking of Anatomical Structuresca
dc.typeinfo:eu-repo/semantics/bookPartca
dc.typenfo:eu-repo/semantics/publishedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Llibres / Capítols de llibre (Biologia Evolutiva, Ecologia i Ciències Ambientals)

Files in This Item:
File Description SizeFormat 
Heredia et al 2024_Landmark anything.pdf340.58 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons