Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219443
Title: Unsupervised deep learning architectures for anomaly detection in brain MRI scans
Author: Malé, Jordi
Xirau, Víctor
Fortea, Juan
Heuzé, Yann
Martínez Abadías, Neus, 1978-
Sevillano, Xavier
Keywords: Intel·ligència artificial
Ecoencefalografia
Artificial intelligence
Ultrasonic encephalograph
Issue Date: 2024
Publisher: IOS Press
Abstract: Brain imaging techniques, particularly magnetic resonance imaging (MRI), play a crucial role in understanding the neurocognitive phenotype and associated challenges of many neurological disorders, providing detailed insights into the structural alterations in the brain. Despite advancements, the links between cognitive performance and brain anatomy remain unclear. The complexity of analyzing brain MRI scans requires expertise and time, prompting the exploration of artificial intelligence for automated assistance. In this context, unsupervised deep learning techniques, particularly Transformers and Autoencoders, offer a solution by learning the distribution of healthy brain anatomy and detecting alterations in unseen scans. In this work, we evaluate several unsupervised models to reconstruct healthy brain scans and detect synthetic anomalies.
Note: Reproducció del document publicat a: https://doi.org/ 10.3233/FAIA240415
It is part of: Capítol del llibre: Alsinet, Teresa, Vilasís, Xavier , García, Daniel, Álvarez, Elena (eds.), Proceedings of the 26th International Conference of the Catalan Association for Artificial Intelligence, IOS Press, 2024, [ISBN 9781643685434], pp. 90-93
URI: https://hdl.handle.net/2445/219443
Related resource: https://doi.org/10.3233/FAIA240415
Appears in Collections:Llibres / Capítols de llibre (Biologia Evolutiva, Ecologia i Ciències Ambientals)

Files in This Item:
File Description SizeFormat 
FAIA-390-FAIA240415.pdf574.16 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons