Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219719
Title: Modelling of chemotatic sprouting endothelial cells through and extracellular matrix
Author: Ferré Torres, Josep
Noguera Monteagudo, Adrià
López Canosa, Adrián
Romero Arias, J. Roberto
Barrio, Rafael
Castaño Linares, Óscar
Hernández Machado, Aurora
Keywords: Angiogènesi
Biomimètica
Neovascularization
Biomimetics
Issue Date: 6-Aug-2023
Publisher: Frontiers Media
Abstract: Sprouting angiogenesis is a core biological process critical to vascular development. Its accurate simulation, relevant to multiple facets of human health, is of broad, interdisciplinary appeal. This study presents an in-silico model replicating a microfluidic assay where endothelial cells sprout into a biomimetic extracellular matrix, specifically, a large-pore, low-concentration fibrin-based porous hydrogel, influenced by chemotactic factors. We introduce a novel approach by incorporating the extracellular matrix and chemotactic factor effects into a unified term using a single parameter, primarily focusing on modelling sprouting dynamics and morphology. This continuous model naturally describes chemotactic-induced sprouting with no need for additional rules. In addition, we extended our base model to account for matrix sensing and degradation, crucial aspects of angiogenesis. We validate our model via a hybrid in-silico experimental method, comparing the model predictions with experimental results derived from the microfluidic setup. Our results underscore the intricate relationship between the extracellular matrix structure and angiogenic sprouting, proposing a promising method for predicting the influence of the extracellular matrix on angiogenesis.
Note: Reproducció del document publicat a: https://doi.org/10.3389/fbioe.2023.1145550
It is part of: Frontiers In Bioengineering And Biotechnology, 2023
URI: https://hdl.handle.net/2445/219719
Related resource: https://doi.org/10.3389/fbioe.2023.1145550
ISSN: 2296-4185
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
850802.pdf3.17 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons