Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/219758
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Torres-Cobos, Berta | - |
dc.contributor.author | Quintanilla-Casas, Beatriz | - |
dc.contributor.author | Rovira, Mercè | - |
dc.contributor.author | Romero, Agustí | - |
dc.contributor.author | Guardiola Ibarz, Francesc | - |
dc.contributor.author | Vichi, S. (Stefania) | - |
dc.contributor.author | Tres Oliver, Alba | - |
dc.date.accessioned | 2025-03-17T08:43:07Z | - |
dc.date.available | 2025-03-17T08:43:07Z | - |
dc.date.issued | 2023-12-26 | - |
dc.identifier.issn | 0308-8146 | - |
dc.identifier.uri | https://hdl.handle.net/2445/219758 | - |
dc.description.abstract | <p>This study compares two data processing techniques (fingerprinting and untargeted profiling) to authenticate</p><p>hazelnut cultivar and provenance based on its unsaponifiable fraction by GC–MS. PLS-DA classification models</p><p>were developed on a selected sample set (n = 176). As test cases, cultivar models were developed for “Tonda di</p><p>Giffoni” vs other cultivars, whereas provenance models were developed for three origins (Chile, Italy or Spain).</p><p>Both fingerprinting and untargeted profiling successfully classified hazelnuts by cultivar or provenance,</p><p>revealing the potential of the unsaponifiable fraction. External validation provided over 90 % correct classification,</p><p>with fingerprinting slightly outperforming. Analysing PLS-DA models’ regression coefficients and</p><p>tentatively identifying compounds corresponding to highly relevant variables showed consistent agreement in</p><p>key discriminant compounds across both approaches. However, fingerprinting in selected ion mode extracted</p><p>slightly more information from chromatographic data, including minor discriminant species. Conversely,</p><p>untargeted profiling acquired in full scan mode, provided pure spectra, facilitating chemical interpretability.</p> | - |
dc.format.extent | 1 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1016/j.foodchem.2023.138294 | - |
dc.relation.ispartof | Food Chemistry, 2023, vol. 441 | - |
dc.relation.uri | https://doi.org/10.1016/j.foodchem.2023.138294 | - |
dc.rights | cc-by-nc-nd (c) Berta Torres-Cobos, et al., 2023 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.source | Articles publicats en revistes (Nutrició, Ciències de l'Alimentació i Gastronomia) | - |
dc.subject.classification | Avellanes | - |
dc.subject.classification | Química dels aliments | - |
dc.subject.other | Hazelnuts | - |
dc.subject.other | Food composition | - |
dc.title | Prospective exploration of hazelnut's unsaponifiable fraction for geographical and varietal authentication: A comparative study of advanced fingerprinting and untargeted profiling techniques | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 745582 | - |
dc.date.updated | 2025-03-17T08:43:07Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Nutrició, Ciències de l'Alimentació i Gastronomia) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
851370.pdf | 4.04 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License