Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219758
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTorres-Cobos, Berta-
dc.contributor.authorQuintanilla-Casas, Beatriz-
dc.contributor.authorRovira, Mercè-
dc.contributor.authorRomero, Agustí-
dc.contributor.authorGuardiola Ibarz, Francesc-
dc.contributor.authorVichi, S. (Stefania)-
dc.contributor.authorTres Oliver, Alba-
dc.date.accessioned2025-03-17T08:43:07Z-
dc.date.available2025-03-17T08:43:07Z-
dc.date.issued2023-12-26-
dc.identifier.issn0308-8146-
dc.identifier.urihttps://hdl.handle.net/2445/219758-
dc.description.abstract<p>This study compares two data processing techniques (fingerprinting and untargeted profiling) to authenticate</p><p>hazelnut cultivar and provenance based on its unsaponifiable fraction by GC–MS. PLS-DA classification models</p><p>were developed on a selected sample set (n = 176). As test cases, cultivar models were developed for “Tonda di</p><p>Giffoni” vs other cultivars, whereas provenance models were developed for three origins (Chile, Italy or Spain).</p><p>Both fingerprinting and untargeted profiling successfully classified hazelnuts by cultivar or provenance,</p><p>revealing the potential of the unsaponifiable fraction. External validation provided over 90 % correct classification,</p><p>with fingerprinting slightly outperforming. Analysing PLS-DA models’ regression coefficients and</p><p>tentatively identifying compounds corresponding to highly relevant variables showed consistent agreement in</p><p>key discriminant compounds across both approaches. However, fingerprinting in selected ion mode extracted</p><p>slightly more information from chromatographic data, including minor discriminant species. Conversely,</p><p>untargeted profiling acquired in full scan mode, provided pure spectra, facilitating chemical interpretability.</p>-
dc.format.extent1 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.foodchem.2023.138294-
dc.relation.ispartofFood Chemistry, 2023, vol. 441-
dc.relation.urihttps://doi.org/10.1016/j.foodchem.2023.138294-
dc.rightscc-by-nc-nd (c) Berta Torres-Cobos, et al., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceArticles publicats en revistes (Nutrició, Ciències de l'Alimentació i Gastronomia)-
dc.subject.classificationAvellanes-
dc.subject.classificationQuímica dels aliments-
dc.subject.otherHazelnuts-
dc.subject.otherFood composition-
dc.titleProspective exploration of hazelnut's unsaponifiable fraction for geographical and varietal authentication: A comparative study of advanced fingerprinting and untargeted profiling techniques-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec745582-
dc.date.updated2025-03-17T08:43:07Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Nutrició, Ciències de l'Alimentació i Gastronomia)

Files in This Item:
File Description SizeFormat 
851370.pdf4.04 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons