Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/219964
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Joshi, Smriti | - |
dc.contributor.author | Osuala, Richard | - |
dc.contributor.author | Garrucho, Lidia | - |
dc.contributor.author | Tsirikoglou, Apostolia | - |
dc.contributor.author | Riego, Javier del | - |
dc.contributor.author | Gwoździewicz, Katarzyna | - |
dc.contributor.author | Kushibar, Kaisar | - |
dc.contributor.author | Díaz, Oliver | - |
dc.contributor.author | Lekadir, Karim, 1977- | - |
dc.date.accessioned | 2025-03-25T08:07:38Z | - |
dc.date.available | 2025-03-25T08:07:38Z | - |
dc.date.issued | 2024 | - |
dc.identifier.uri | https://hdl.handle.net/2445/219964 | - |
dc.description.abstract | Medical image segmentation has improved with deep-learning methods, especially for tumor segmentation. However, variability in tumor shapes, sizes, and enhancement remains a challenge. Breast MRI adds further uncertainty due to anatomical differences. Informing clinicians about result reliability and using model uncertainty to improve predictions are essential. We study Monte-Carlo Dropout for generating multiple predictions and finding consensus segmentation. Our approach reduces false positives using per-pixel uncertainty and improves segmentation metrics. In addition, we study the correlation of model performance to the perceived ease of manual segmentation. Finally, we compare the per-pixel uncertainty with the inter-rater variability as segmented by six different radiologists. Our code is available at https://github.com/smriti-joshi/uncertainty-segmentation-mcdropout.git. | ca |
dc.format.extent | 9 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.publisher | SPIE | ca |
dc.relation.isformatof | Versió postprint de la comunicació publicada a: https://doi.org/10.1117/12.3006783 | - |
dc.relation.ispartof | Comunicació a: Proc. SPIE 12926, Medical Imaging 2024: Image Processing, 1292616 (2 April 2024) | - |
dc.relation.ispartofseries | Proceedings SPIE | ca |
dc.relation.ispartofseries | 12926 | ca |
dc.relation.uri | https://doi.org/10.1117/12.3006783 | - |
dc.rights | (c) SPIE, 2024 | - |
dc.source | Comunicacions a congressos (Matemàtiques i Informàtica) | - |
dc.subject.classification | Imatges mèdiques | - |
dc.subject.classification | Aprenentatge automàtic | - |
dc.subject.classification | Càncer de mama | ca |
dc.subject.other | Imaging systems in medicine | - |
dc.subject.other | Machine learning | - |
dc.subject.other | Breast cancer | en |
dc.title | Leveraging epistemic uncertainty to improve tumour segmentation in breast MRI: an exploratory analysis | ca |
dc.type | info:eu-repo/semantics/conferenceObject | ca |
dc.type | info:eu-repo/semantics/acceptedVersion | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Comunicacions a congressos (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
SPIE_1 2024_SPIE_Segmentation_Uncertainty.pdf | 1.26 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.