Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219964
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJoshi, Smriti-
dc.contributor.authorOsuala, Richard-
dc.contributor.authorGarrucho, Lidia-
dc.contributor.authorTsirikoglou, Apostolia-
dc.contributor.authorRiego, Javier del-
dc.contributor.authorGwoździewicz, Katarzyna-
dc.contributor.authorKushibar, Kaisar-
dc.contributor.authorDíaz, Oliver-
dc.contributor.authorLekadir, Karim, 1977--
dc.date.accessioned2025-03-25T08:07:38Z-
dc.date.available2025-03-25T08:07:38Z-
dc.date.issued2024-
dc.identifier.urihttps://hdl.handle.net/2445/219964-
dc.description.abstractMedical image segmentation has improved with deep-learning methods, especially for tumor segmentation. However, variability in tumor shapes, sizes, and enhancement remains a challenge. Breast MRI adds further uncertainty due to anatomical differences. Informing clinicians about result reliability and using model uncertainty to improve predictions are essential. We study Monte-Carlo Dropout for generating multiple predictions and finding consensus segmentation. Our approach reduces false positives using per-pixel uncertainty and improves segmentation metrics. In addition, we study the correlation of model performance to the perceived ease of manual segmentation. Finally, we compare the per-pixel uncertainty with the inter-rater variability as segmented by six different radiologists. Our code is available at https://github.com/smriti-joshi/uncertainty-segmentation-mcdropout.git.ca
dc.format.extent9 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherSPIEca
dc.relation.isformatofVersió postprint de la comunicació publicada a: https://doi.org/10.1117/12.3006783-
dc.relation.ispartofComunicació a: Proc. SPIE 12926, Medical Imaging 2024: Image Processing, 1292616 (2 April 2024)-
dc.relation.ispartofseriesProceedings SPIEca
dc.relation.ispartofseries12926ca
dc.relation.urihttps://doi.org/10.1117/12.3006783-
dc.rights(c) SPIE, 2024-
dc.sourceComunicacions a congressos (Matemàtiques i Informàtica)-
dc.subject.classificationImatges mèdiques-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationCàncer de mamaca
dc.subject.otherImaging systems in medicine-
dc.subject.otherMachine learning-
dc.subject.otherBreast canceren
dc.titleLeveraging epistemic uncertainty to improve tumour segmentation in breast MRI: an exploratory analysisca
dc.typeinfo:eu-repo/semantics/conferenceObjectca
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Comunicacions a congressos (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
SPIE_1 2024_SPIE_Segmentation_Uncertainty.pdf1.26 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.