Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219966
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCama, Isabella-
dc.contributor.authorGuzman Requena, Alejandro-
dc.contributor.authorGarbarino, Sara-
dc.contributor.authorCampi, Cristina-
dc.contributor.authorLekadir, Karim, 1977--
dc.contributor.authorDíaz, Oliver-
dc.date.accessioned2025-03-25T08:45:10Z-
dc.date.available2025-03-25T08:45:10Z-
dc.date.issued2024-
dc.identifier.urihttps://hdl.handle.net/2445/219966-
dc.description.abstractImaging features (radiomics) have potential for predicting Triple Negative Breast Cancer and other subtypes using magnetic resonance images (MRI). This work uses 244 images from the Duke-Breast-Cancer-MRI dataset to investigate the complex interplay between radiomics feature stability, with respect to segmentation variability, and prediction results of machine learning models. Our analysis reveals that features demonstrating high stability across different segmentations tend to enhance model performance, whereas unstable features sensitive to small segmentation changes degrade predictive accuracy. This exploration underscores the importance of feature stability in the development of reliable models for breast cancer subtype classification.ca
dc.format.extent10 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherSPIEca
dc.relation.isformatofVersió postprint de la comunicació publicada a: https://doi.org/10.1117/12.3027015-
dc.relation.ispartofComunicació a: Proc. SPIE 13174, 17th International Workshop on Breast Imaging (IWBI 2024), 131741O (29 May 2024)-
dc.relation.ispartofseriesProceedings SPIEca
dc.relation.ispartofseries13174ca
dc.relation.urihttps://doi.org/10.1117/12.3027015-
dc.rights(c) SPIE, 2024-
dc.sourceComunicacions a congressos (Matemàtiques i Informàtica)-
dc.subject.classificationCàncer de mama-
dc.subject.classificationImatges per ressonància magnètica-
dc.subject.classificationAprenentatge automàticca
dc.subject.otherBreast cancer-
dc.subject.otherMagnetic resonance imaging-
dc.subject.otherMachine learningen
dc.titleA study on the role of radiomics feature stability in predicting breast cancer subtypesca
dc.typeinfo:eu-repo/semantics/conferenceObjectca
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Comunicacions a congressos (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
SPIE_2 SPIE Abstract_submission___IWBI_2024_Alejandro_Isabella (1).pdf752.41 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.