Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219971
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBuetas Arcas, Marta-
dc.contributor.authorOsuala, Richard-
dc.contributor.authorLekadir, Karim, 1977--
dc.contributor.authorDíaz, Oliver-
dc.date.accessioned2025-03-25T09:58:00Z-
dc.date.available2025-03-25T09:58:00Z-
dc.date.issued2024-
dc.identifier.urihttps://hdl.handle.net/2445/219971-
dc.description.abstractArtificial Intelligence (AI) has emerged as a valuable tool for assisting radiologists in breast cancer detection and diagnosis. However, the success of AI applications in this domain is restricted by the quantity and quality of available data, posing challenges due to limited and costly data annotation procedures that often lead to annotation shifts. This study simulates, analyses and mitigates annotation shifts in cancer classification in the breast mammography domain. First, a high-accuracy cancer risk prediction model is developed, which effectively distinguishes benign from malignant lesions. Next, model performance is used to quantify the impact of annotation shift. We uncover a substantial impact of annotation shift on multiclass classification performance particularly for malignant lesions. We thus propose a training data augmentation approach based on single-image generative models for the affected class, requiring as few as four in-domain annotations to considerably mitigate annotation shift, while also addressing dataset imbalance. Lastly, we further increase performance by proposing and validating an ensemble architecture based on multiple models trained under different data augmentation regimes. Our study offers key insights into annotation shift in deep learning breast cancer classification and explores the potential of single-image generative models to overcome domain shift challenges. All code used for this study is made publicly available at https://github.com/MartaBuetas/EnhancingBreastCancerDiagnosis.ca
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherSPIEca
dc.relation.isformatofVersió postprint de la comunicació publicada a: https://doi.org/10.1117/12.3025548-
dc.relation.ispartofComunicació a: Proc. SPIE 13174, 17th International Workshop on Breast Imaging (IWBI 2024), 1317421 (29 May 2024)-
dc.relation.ispartofseriesProceedings SPIEca
dc.relation.ispartofseries13174ca
dc.relation.urihttps://doi.org/10.1117/12.3025548-
dc.rights(c) SPIE, 2024-
dc.sourceComunicacions a congressos (Matemàtiques i Informàtica)-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationCàncer de mama-
dc.subject.classificationMamografiaca
dc.subject.otherMachine learning-
dc.subject.otherBreast cancer-
dc.subject.otherMammographyen
dc.titleMitigating annotation shift in cancer classification using single image generative modelsca
dc.typeinfo:eu-repo/semantics/conferenceObjectca
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Comunicacions a congressos (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
SPIE_3 Buetas Arcas SPIE IWBI 2024.pdf2.48 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.