Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220045
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDelgado de la Torre, Rosario-
dc.contributor.authorFernández-Peláez, Francisco-
dc.contributor.authorPallarès, Natàlia-
dc.contributor.authorDíaz Brito, Vicens-
dc.contributor.authorIzquierdo, Elisenda-
dc.contributor.authorOriol, Isabel-
dc.contributor.authorSimonetti, Antonella-
dc.contributor.authorTebé, Cristian-
dc.contributor.authorVidela, Sebastián-
dc.contributor.authorCarratalà, Jordi-
dc.date.accessioned2025-03-26T16:26:42Z-
dc.date.available2025-03-26T16:26:42Z-
dc.date.issued2024-11-18-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://hdl.handle.net/2445/220045-
dc.description.abstractThis study aims to develop a Machine Learning model to assess the risks faced by COVID-19 patients in a hospital setting, focusing specifically on predicting the complications leading to Intensive Care Unit (ICU) admission or mortality, which are minority classes compared to the majority class of discharged patients. We operate within a multiclass framework comprising three distinct classes, and address the challenge of dataset imbalance, a common source of model bias. To effectively manage this, we introduce the Multi-Thresholding meta-algorithm (MTh), an innovative output-level methodology that extends traditional thresholding from binary to multiclass classification. This methodology dynamically adjusts class probabilities using misclassification costs, making it highly effective in imbalanced datasets. Our approach is further enhanced by integrating the simplicity, transparency, and effectiveness of Bayesian networks to create a robust predictive model. Using patient admission data, the model accurately identifies key risk and protective factors for COVID-19 outcomes. Our findings indicate that certain patient characteristics, such as high Charlson Index and pre-existing conditions, significantly influence the risk of ICU admission and mortality. Moreover, we introduce an explanatory model that elucidates the interrelationships among these factors, demonstrating the influence of therapeutic limits on the overall risk assessment of COVID-19 patients. Overall, our research provides a significant contribution to the field of Machine Learning by offering a novel solution for multiclass classification in the context of imbalanced datasets. This model not only enhances predictive accuracy but also supports critical decision-making processes in healthcare, potentially improving patient outcomes and optimizing clinical resource allocation.-
dc.format.extent33 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41598-024-77386-7-
dc.relation.ispartofScientific Reports, 2024, vol. 14-
dc.relation.urihttps://doi.org/10.1038/s41598-024-77386-7-
dc.rightscc-by (c) Delgado, R. et al., 2024-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Ciències Clíniques)-
dc.subject.classificationAlgorismes-
dc.subject.classificationUnitats de cures intensives-
dc.subject.classificationEstadística bayesiana-
dc.subject.classificationCOVID-19-
dc.subject.otherAlgorithms-
dc.subject.otherIntensive care units-
dc.subject.otherBayesian statistical decision-
dc.subject.otherCOVID-19-
dc.titlePredictive risk models for COVID-19 patients using the multi-thresholding meta-algorithm-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec755089-
dc.date.updated2025-03-26T16:26:43Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid39557887-
Appears in Collections:Articles publicats en revistes (Ciències Clíniques)
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
881252.pdf6.65 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons