Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220118
Title: SO(3) representations for a rationally-symmetric Schrödinger equation
Author: Jutglar Puig, Arnau
Director/Tutor: Mundet i Riera, Ignasi
Keywords: Equació de Schrödinger
Grups de Lie
Teoria quàntica
Geometria diferencial
Treballs de fi de grau
Schrödinger equation
Lie groups
Quantum theory
Differential geometry
Bachelor's theses
Issue Date: 10-Jun-2024
Abstract: We motivate the study of the representations of SO(3) by showing how it is useful to solve the angular part of the Schrödinger equation for a particle under a central potential, with an emphasis in the Casimir operator. We study finite-dimensional representations and finish with the applications of the Peter-Weyl theorem for representations in homogeneous spaces
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Ignasi Mundet i Riera
URI: https://hdl.handle.net/2445/220118
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_Jutglar_puig_arnau.pdfMemòria1.18 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons