Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220330
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNgoc Dang, Vien-
dc.contributor.authorCasamitjana, Adrià-
dc.contributor.authorHernández-González, Jerónimo-
dc.contributor.authorLekadir, Karim, 1977--
dc.date.accessioned2025-04-08T10:02:22Z-
dc.date.available2025-04-08T10:02:22Z-
dc.date.issued2024-10-13-
dc.identifier.isbn978-3-031-72787-0-
dc.identifier.urihttps://hdl.handle.net/2445/220330-
dc.description.abstractDiagnosing Alzheimer’s disease (AD) presents significant challenges in the oldest populations due to overlapping symptoms of normal cognitive aging and early-stage dementia. While AI algorithms have matched specialist performance in diagnosing AD, they tend to produce unreliable results for the oldest populations, generating false positives that increase radiologist workloads and healthcare costs. In this study, we focus on mitigating overdiagnosis bias in CNN-based AD diagnosis for these groups. We present a post-hoc bias mitigation technique that significantly improves fairness by reducing overdiagnosis and enhances reliability by improving calibration without compromising overall model accuracy. Code is available at: https://github.com/ngoc-vien-dang/C-GTOP.en
dc.format.extent10 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.relation.isformatofVersió postprint de la comunicació Mitigating Overdiagnosis Bias in CNN-Based Alzheimer’s Disease Diagnosis for the Elderly del congrés publicat a https://doi.org/10.1007/978-3-031-72787-0_5-
dc.relation.ispartofComunicació a: Ethics and Fairness in Medical Imaging: Second International Workshop on Fairness of AI in Medical Imaging, FAIMI 2024, and Third International Workshop on Ethical and Philosophical Issues in Medical Imaging, EPIMI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6–10, 2024-
dc.relation.ispartofseriesLecture Notes in Computer Scienceca
dc.relation.ispartofseries15198ca
dc.rightsSpringer Nature Switzerland AG (c) Vien Ngoc Dang, et al., 2025-
dc.sourceComunicacions a congressos (Matemàtiques i Informàtica)-
dc.subject.classificationXarxes neuronals convolucionals-
dc.subject.classificationMalaltia d'Alzheimer-
dc.subject.classificationImatges mèdiquesca
dc.subject.otherConvolutional neural networksen
dc.subject.otherAlzheimer's diseaseen
dc.subject.otherImaging systems in medicineen
dc.titleMitigating Overdiagnosis Bias in CNN-Based Alzheimer’s Disease Diagnosis for the Elderlyca
dc.typeinfo:eu-repo/semantics/conferenceObjectca
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Comunicacions a congressos (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
Mitigating Overdiagnosis Bias.pdfComunicació302.84 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.