Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220361
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMazorra, Bruno-
dc.contributor.advisorDieulefait, L. V. (Luis Victor)-
dc.contributor.authorPeso Vilella, Antonio-
dc.date.accessioned2025-04-09T08:28:47Z-
dc.date.available2025-04-09T08:28:47Z-
dc.date.issued2024-06-10-
dc.identifier.urihttps://hdl.handle.net/2445/220361-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Bruno Mazorra i Luis Victor Dieulefaitca
dc.description.abstractThe idea of zero-knowledge proof was first introduced by Goldwasser, Micali and Rackoff [GMR89] and has found its way to many real-world applications. The growing need for privacy in information exchange (e.g. transactions, digital signatures, commitment schemes, ...) lead to the development of proofs that yield nothing more than their validity. We introduce the building blocks for zero-knowledge proofs through mathematical rigour, allowing the reader to gain a solid foundation to research further related topics. We explore some necessary notions of cryptography and probability, as well as computation theory by utilizing Turing machines as an automation abstraction. We delve into the theory of decision problems and the consequent classification through complexity classes, specially $\mathcal{P}, \mathcal{N} \mathcal{P}, \mathcal{B} \mathcal{P} \mathcal{P}$ and $\mathcal{I P}$. We use the concepts of repetition and interaction to prove that the decision error for languages in $\mathcal{B P} \mathcal{P}$ and $\mathcal{I P}$ can be decreased exponentially and explore the example of Graph Non-Isomorphism. We introduce the idea of zero-knowledge interactive proof systems and define some variations of its definition. We explore the example of Graph Isomorphism and conclude showing that the sequential repetition of zero-knowledge interactive proofs is indeed a zero-knowledge interactive proof.en
dc.format.extent65 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Antonio Peso Vilella, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationMàquines de Turingca
dc.subject.classificationComplexitat computacional-
dc.subject.classificationTeoria de la computacióca
dc.subject.classificationTreballs de fi de grauca
dc.subject.otherTuring machinesen
dc.subject.otherComputational complexity-
dc.subject.otherTheory of computationen
dc.subject.otherBachelor's thesesen
dc.titleA formal introduction to zero-knowledge proofsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_peso_vilella_antonio.pdfMemòria1.05 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons