Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/220648
Title: | Hamiltonian birefringence and Born-Infeld limits |
Author: | Mezincescu, Luca Russo, J. G. (Jorge Guillermo) Townsend, Paul K. |
Keywords: | Sistemes hamiltonians Teoria de camps (Física) Electrodinàmica Hamiltonian systems Field theory (Physics) Electrodynamics |
Issue Date: | 2024 |
Publisher: | Springer Verlag |
Abstract: | Abstract: Using Hamiltonian methods, we fnd six relativistic theories of nonlinear electrodynamics for which plane wave perturbations about a constant uniform background are not birefringent. All have the same conformal strong-feld limit to Bialynicki-Birula (BB) electrodynamics, but only four avoid superluminal propagation: Born-Infeld (BI), its non-conformal “extreme” limits (electric and magnetic) and the conformal BB limit. The quadratic dispersion relation of BI is shown to degenerate in the extreme limits to a pair of linear relations, which become identical in the BB limit. |
Note: | Reproducció del document publicat a: https://doi.org/10.1007/JHEP02(2024)186 |
It is part of: | Journal of High Energy Physics, 2024, vol. 2024, num.186 |
URI: | https://hdl.handle.net/2445/220648 |
Related resource: | https://doi.org/10.1007/JHEP02(2024)186 |
ISSN: | 1126-6708 |
Appears in Collections: | Articles publicats en revistes (Física Quàntica i Astrofísica) Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB)) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
889261.pdf | 472.44 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License