Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/220656
Title: | Ein–Lazarsfeld–Mustopa conjecture for the blow-up of a projective space |
Author: | Miró-Roig, Rosa M. (Rosa Maria) Salat Moltó, Martí |
Keywords: | Àlgebra commutativa Superfícies algebraiques Geometria algebraica Varietats algebraiques Commutative algebra Algebraic surfaces Algebraic geometry Algebraic varieties |
Issue Date: | 18-Jan-2023 |
Publisher: | Springer Verlag |
Abstract: | We solve the Ein-Lazarsfeld-Mustopa conjecture for the blow up of a projective space along a linear subspace. More precisely, let $X$ be the blow up of $\mathbb{P}^n$ at a linear subspace and let $L$ be any ample line bundle on $X$. We show that the syzygy bundle $M_L$ defined as the kernel of the evalution map $H^0(X, L) \otimes \mathcal{O}_X \rightarrow L$ is $L$-stable. In the last part of this note we focus on the rigidness of $M_L$ to study the local shape of the moduli space around the point $\left[M_L\right]$. |
Note: | Reproducció del document publicat a: https://doi.org/10.1007/s10231-023-01359-2 |
It is part of: | Annali di Matematica Pura ed Applicata, 2023, vol. 203, num.1, p. 221-233 |
URI: | https://hdl.handle.net/2445/220656 |
Related resource: | https://doi.org/10.1007/s10231-023-01359-2 |
ISSN: | 0373-3114 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
845292.pdf | 311.83 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License