Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220656
Title: Ein–Lazarsfeld–Mustopa conjecture for the blow-up of a projective space
Author: Miró-Roig, Rosa M. (Rosa Maria)
Salat Moltó, Martí
Keywords: Àlgebra commutativa
Superfícies algebraiques
Geometria algebraica
Varietats algebraiques
Commutative algebra
Algebraic surfaces
Algebraic geometry
Algebraic varieties
Issue Date: 18-Jan-2023
Publisher: Springer Verlag
Abstract: We solve the Ein-Lazarsfeld-Mustopa conjecture for the blow up of a projective space along a linear subspace. More precisely, let $X$ be the blow up of $\mathbb{P}^n$ at a linear subspace and let $L$ be any ample line bundle on $X$. We show that the syzygy bundle $M_L$ defined as the kernel of the evalution map $H^0(X, L) \otimes \mathcal{O}_X \rightarrow L$ is $L$-stable. In the last part of this note we focus on the rigidness of $M_L$ to study the local shape of the moduli space around the point $\left[M_L\right]$.
Note: Reproducció del document publicat a: https://doi.org/10.1007/s10231-023-01359-2
It is part of: Annali di Matematica Pura ed Applicata, 2023, vol. 203, num.1, p. 221-233
URI: https://hdl.handle.net/2445/220656
Related resource: https://doi.org/10.1007/s10231-023-01359-2
ISSN: 0373-3114
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
845292.pdf311.83 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons