Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221121
Title: Using wavelets to capture deviations from smoothness in galaxy-scale strong lenses
Author: Galan, A.
Vernardos, G.
Peel, A.
Courbin, Frédéric
Starck, J.-L.
Keywords: Galàxies
Matèria fosca (Astronomia)
Gravitació
Galaxies
Dark matter (Astronomy)
Gravitation
Issue Date: 2022
Publisher: EDP Sciences
Abstract: Modeling the mass distribution of galaxy-scale strong gravitational lenses is a task of increasing difficulty. The high-resolution and depth of imaging data now available render simple analytical forms ineffective at capturing lens structures spanning a large range in spatial scale, mass scale, and morphology. In this work, we address the problem with a novel multiscale method based on wavelets. We tested our method on simulated Hubble Space Telescope (HST) imaging data of strong lenses containing the following different types of mass substructures making them deviate from smooth models: (1) a localized small dark matter subhalo, (2) a Gaussian random field (GRF) that mimics a nonlocalized population of subhalos along the line of sight, and (3) galaxy-scale multipoles that break elliptical symmetry. We show that wavelets are able to recover all of these structures accurately. This is made technically possible by using gradient-informed optimization based on automatic differentiation over thousands of parameters, which also allow us to sample the posterior distributions of all model parameters simultaneously. By construction, our method merges the two main modeling paradigms – analytical and pixelated – with machine-learning optimization techniques into a single modular framework. It is also well-suited for the fast modeling of large samples of lenses.
Note: Reproducció del document publicat a: https://doi.org/10.1051/0004-6361/202244464
It is part of: Astronomy & Astrophysics, 2022, vol. 668, num.A155
URI: https://hdl.handle.net/2445/221121
Related resource: https://doi.org/10.1051/0004-6361/202244464
ISSN: 0004-6361
Appears in Collections:Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))

Files in This Item:
File Description SizeFormat 
884465.pdf4.71 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.