Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221203
Title: Introduction to contact topology
Author: Velasco Soldevila, Eduard
Director/Tutor: Cardona Aguilar, Robert
Keywords: Topologia
Topologia diferencial
Treballs de fi de màster
Topology
Differential topology
Master's thesis
Issue Date: 9-Jan-2025
Abstract: This master’s thesis provides an introduction to contact topology, with the primary objective of proving Martinet’s Theorem, which asserts that every closed, connected 3-manifold admits a contact structure. The proof heavily relies on the Lickorish-Wallace Theorem, which states that any such 3-manifold can be obtained from $S^{3}$ via a finite sequence of Dehn surgeries. The thesis explores key concepts in contact topology, such as contact structures, Darboux’s Theorem, and Gray stability. A complete proof of the Lickorish-Wallace Theorem is given before focusing on the detailed proof of Martinet’s Theorem, highlighting the ubiquity of contact structures in 3-manifolds.
Note: Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Any: 2025. Director: Robert Cardona Aguilar
URI: https://hdl.handle.net/2445/221203
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
tfm_velasco_soldevila_eduard.pdfMemòria4.43 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons